Answer on Question \#55124 - Math - Statistics and Probability

Question

True or False? Justify.

The area under the curve of a standard normal distribution between $-\infty$ and 0 is 0.45 .

Solution

The curve of a standard normal distribution has the next form:

$$
f(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}}, x \in \mathbb{R}
$$

Since $f(-x)=f(x)$, then f is even and its graph is symmetric with respect to y-axis. Then $\int_{-\infty}^{0} f(x) d x=\int_{0}^{\infty} f(x) d x$. Since f is a density of a distribution, we have $\int_{-\infty}^{\infty} f(x) d x=1$. On the other hand, $\int_{-\infty}^{\infty} f(x) d x=\int_{-\infty}^{0} f(x) d x+\int_{0}^{\infty} f(x) d x=2 \int_{-\infty}^{0} f(x) d x$. So we conclude that $\int_{-\infty}^{0} f(x) d x=\frac{1}{2}=0.5$. The area under the curve of a standard normal distribution between $-\infty$ and 0 is 0.5 .

Answer: False.

