Answer on Question \#54400- Math - Algebra

Question:

The mass of a particular substance is known to grow exponentially at a rate of 12.5% per week. Its initial mass was 34 grams and, after t weeks, it weighed 143 grams. The equation modeling this growth is $34 \times 1.125 t=143$. Use the method of taking logs to solve this equation for t, giving your answer correct to the nearest week. (Your answer should be a number, without units)

Solution:

Definition of the general exponential function:

We say P is an exponential function of t with base a if

$$
\begin{equation*}
P=P_{0} a^{t} \tag{1}
\end{equation*}
$$

where P_{0} is the initial quantity (when $t=0$) and a is the factor by which P changes when t increases by 1 . If $a>1$, we have exponential growth; if $0<a<1$, we have exponential decay.

According to the statement of the problem we have

$$
\begin{equation*}
143=34 \cdot(1.125)^{t} \tag{2}
\end{equation*}
$$

Dividing both sides of the equation (2) by "34" we obtain

$$
\begin{equation*}
\frac{143}{34}=(1.125)^{t} . \tag{3}
\end{equation*}
$$

Now, we apply the natural logarithm " n " to both sides of the equation (3) and use the formula

$$
\begin{equation*}
\ln A^{B}=B \cdot \ln A . \tag{4}
\end{equation*}
$$

Namely,

$$
\ln \left(\frac{143}{34}\right)=\ln \left((1.125)^{t}\right)=t \ln (1.125)
$$

Hence, we find t :

$$
\begin{equation*}
t=\frac{\ln \left(\frac{143}{34}\right)}{\ln (1.125)}=\frac{1.437}{0.118}=12.178 \approx 12 . \tag{5}
\end{equation*}
$$

Answer: 12 weeks.

