Answer on Question \#53934 - Math - Analytic Geometry

Question

Find the center, vertices, and foci of the ellipse with equation $2 x^{2}+7 y^{2}=14$.

Solution

We transform the original equation in the next way: $\frac{x^{2}}{7}+\frac{y^{2}}{2}=1 \Leftrightarrow \frac{x^{2}}{(\sqrt{7})^{2}}+\frac{y^{2}}{(\sqrt{2})^{2}}=1$. So we have: $a=\sqrt{7}, b=\sqrt{2}$. Using the fact that canonical equation of ellipse has the form $\frac{\left(x-x_{0}\right)^{2}}{a^{2}}+\frac{\left(y-y_{0}\right)^{2}}{b^{2}}=1$ where $\left(x_{0} ; y_{0}\right)$ is the center, we conclude that the ellipse $\frac{x^{2}}{(\sqrt{7})^{2}}+\frac{y^{2}}{(\sqrt{2})^{2}}=1$ has the center at the point $(0 ; 0)$. The vertices are $A(-\sqrt{7} ; 0), B(0 ; \sqrt{2}), C(\sqrt{7} ; 0), D(0 ;-\sqrt{2})$. The focal length is equal to $c=\sqrt{a^{2}-b^{2}}=\sqrt{7-2}=\sqrt{5}$ so the foci are $F_{2}(-\sqrt{5} ; 0)$ and $F_{1}(\sqrt{5} ; 0)$.

Answer: Center: ($0 ; 0$);
vertices: $(-\sqrt{7} ; 0),(0 ; \sqrt{2}),(\sqrt{7} ; 0),(0 ;-\sqrt{2})$;
foci: $(-\sqrt{5} ; 0)$ and $(\sqrt{5} ; 0)$.

D
www.AssignmentExpert.com

