Answer on questions \# 53932-Math-Calculus

Find the standard form of the equation of the parabola with a focus at $(0,6)$ and a directrix at $y=-$ 6.

Solution:

Since directrix is a horizontal line, this is a regular vertical parabola, where the x part is squared.
The equation of a vertical parabola is:

$$
(x-h)^{2}=4 p(y-k)
$$

where, (h, k) - are the coordinates of the vertex; $p=$ distance from the vertex to the focus.
So, we need to find out h, k and p and plug those values in our equation.
We know that the vertex of a parabola is halfway between focus and the directrix.
We know the focus $(0,6)$ and directrix $y=-6$. Therefore, vertex $(h, k)=(0,0)$.
Now, $p=$ distance from the vertex to the focus $=$ distance from the $(0,0)$ to the $(0,6)=6$.
Plug all the values in our equation:

$$
\begin{gathered}
(x-0)^{2}=4 * 6(y-0) ; \\
x^{2}=24 y \\
y=\frac{x^{2}}{24}
\end{gathered}
$$

Answer:

Standard form of the equation of the parabola:

$$
y=\frac{x^{2}}{24}
$$

