Question

Solve the simultaneous equations

$$\begin{cases} 3y^{\frac{1}{3}} = 2x^{\frac{1}{2}} & (1) \\ 3y - 2x = 6 & (2) \end{cases}$$

Solution

- 1. Take $x^{\frac{1}{2}}$ from (1) $x^{\frac{1}{2}} = \frac{3}{2}y^{\frac{1}{3}}$ and substitute into (2): $x^{\frac{1}{2}} = \frac{3}{2}y^{\frac{1}{3}} \rightarrow 3y - 2\left(\frac{3}{2}y^{\frac{1}{3}}\right)^2 = 6 \rightarrow$ $3y - \frac{9}{2}y^{\frac{2}{3}} = 6 \rightarrow 2y - 3y^{\frac{2}{3}} = 4$
- 2. Introduce a new variable $t = y^{\frac{1}{3}}$
- 3. Rewrite equation in terms of this variable: $2y - 3y^{\frac{2}{3}} = 4 \rightarrow$

$$2t^3 - 3t^2 - 4 = 0$$
 (3)

4. Check if ± 1 or ± 2 are roots of equation (3): 2 * $1^3 - 3 * 1^2 - 4 = -5 \neq 0$

$$2 * (-1)^{3} - 3 * (-1)^{2} - 4 = -9 \neq 0$$

$$2 * (-2)^{3} - 3 * (-2)^{2} - 4 = -32$$

$$2 * (-2)^{3} - 3 * (-2)^{2} - 4 = -32$$

Thus, $t_1 = 2$ is a root of equation (3)

- 5. Divide $2t^3 3t^2 4$ by t 2 in order to factor out $2t^3 3t^2 4$: $\frac{2t^3 - 3t^2 - 4}{t - 2} = 2t^2 + t + 2$
- 6. Solve obtained quadratic equation: $2t^2 + t + 2 = 0$

$$D = 1 - 4 * 2 * 2 = -15$$

$$t_2 = \frac{-1 + i\sqrt{15}}{4}; \quad t_3 = \frac{-1 - i\sqrt{15}}{4}$$

7. Back to $y: y = t^3$.

$$y_1 = 8; \quad y_2 = \frac{11 - i3\sqrt{15}}{16}; \quad y_3 = \frac{11 + i3\sqrt{15}}{16}$$

8. Calculate respective $x: x = 3\left(\frac{y}{2} - 1\right)$

$$x_1 = 9; \quad x_2 = \frac{-63 - i9\sqrt{15}}{32}; \quad x_3 = \frac{-63 + i9\sqrt{15}}{32}$$

- 9. Note that pairs $x_{2,3}, y_{2,3}$ have different phase in exponential representation that isn't fraction of π (e.g. $y_2 \rightarrow e^{-itan^{-1}\left(\frac{3\sqrt{15}}{11}\right)}$ and $x_2 \rightarrow e^{i\left(tan^{-1}\left(\frac{\sqrt{15}}{7}\right) \pi\right)}$). It means that those solutions do not satisfy (1) (they appear due to step 2).
- 10. The only one solution left $\rightarrow x = 9$; y = 8.

Answer: x = 9; y = 8.

www.AssignmentExpert.com