Answer on Question \#53403 - Math - Analytic Geometry

Two circles C 1 and C 2 both have the coordinate axes as tangents. Equation of C 1 is $(x-a)^{2}+$ $(y-b)^{2}=25$ where $a<0$ and $b>0$ and equation of $C 2$ is $(x-c)^{2}+(y-d)^{2}=16$ where $c, d>0$.

C 1 touches the x axis at the point A and has its centre at the point B
$C 2$ touches the x axis at the point D and has its centre at the point C
Find the area of the quadrilateral ABCD giving your answer as an exact fraction.
Solution

Based on the given information we drew the above figure. Thus the quadrilateral $A B C D$ is trapezoid. Its area is given by

$$
S=\frac{A B+C D}{2} A D
$$

It's obvious that radii of C1 and C2 are

$$
\begin{aligned}
& A B=\sqrt{25}=5 \\
& C D=\sqrt{16}=4
\end{aligned}
$$

The line (AB) pathing through the centre of the circle and the line (y-axis) tangent to it are parallel, therefore the distance (AO) between these two lines is equal to the radius of the ircle C 1 . The same is correct for circle C2.

Since x -axis is tangent to C 1 and $\mathrm{C} 2, B A$ and $C D$ are perpendicular to it as radii of these circles. Since y-axis is perpendicular to $A D$, then using the previous statement we obtain that $B A$ is parallel to y-axis and $C D$ is also parallel to y-axis. Since y-axis is tangent to both $C 1$ and $C 2$, then using previous statement we obtain that $A O$ is equal to the radius of the circle $\mathrm{C} 1(A B)$ and $D O$ is equal to the radius of the circle $C 2(C D)$. Thus $A D=A O+D O=A B+C D$ and we obtain

$$
S=\frac{A B+C D}{2} A D=\frac{(A B+C D)^{2}}{2}=\frac{(5+4)^{2}}{2}=\frac{81}{2}
$$

Answer: $\frac{81}{2}$.

