Answer on Question \#53273 - Math - Analytic Geometry

Question:
A circle with area (25/9)* pi touches the x-axis at the point $(4,0)$.
The point T is the furthest point on the circle from the origin O . Find the length of OT giving your answer as a simplified fraction.

Solution

If circle's area is $(25 / 9)^{*}$ pi, the formula for area of circle is $S=\mathrm{pi}^{*} \mathrm{r}^{2}$, where r is the length of circle's radius, then
(25/9)* $\mathrm{pi}^{=} \mathrm{pi}^{*}{ }^{2}$, so $\mathrm{r}=5 / 3$.
If circle's radius is $5 / 3$ and circle touches the x-axis at point (4,0), then the equation of the circle is $(x-4)^{2}+(y-5 / 3)^{2}=25 / 9$. The center of the circle is $(4,5 / 3)$.
furthest lie on a diameter
$y=m x+c$
gradient $m=y / x=(5 / 3) / 4=5 / 12$
$y=m x+c$
$5 / 3=(5 / 12)^{*} 4+$ c. so $c=0$.
The line from the center of the circle to the origin is $y=5 x / 12$. Find the intersections of line and circle.
$(x-4)^{2}+((5 x / 12)-5 / 3)^{2}=25 / 9$
$x^{2}-8 x+16+25 x^{2} / 144+25 / 9-25 / 18=25 / 9$
$x=32 / 13 ; 72 / 13$.
farthest from origin: $(72 / 13,30 / 13)$.
So the coordinates of T is $(72 / 13,30 / 13)$.
the length of OT is: $\mathrm{OT}=\left((72 / 13)^{2}+(30 / 13)^{2}\right)^{1 / 2}=6$.

Answer: OT=6

