Answer on Question \#53016 - Math - Analytic Geometry

Find the distance between the lines $x+2 y=6$ and $2 x+4 y=-9$.

Solution

Method 1

Lines $x+2 y=6$ and $2 x+4 y=-9$ are parallel, because relation between coefficients of two lines

$$
\frac{1}{2}=\frac{2}{4} \neq \frac{6}{-9}
$$

holds true.
Rewrite equation of $2 x+4 y=-9$ in the following form: $2 x+4 y+9=0$, where $a=2, b=4, c=9$.

Take a point on the first line $x+2 y=6$, let's say $(0,3)$. Using the formula for distance d from a point $(0,3)$ to line $2 x+4 y+9=0$ obtain $d=\frac{\left|a x_{0}+b y_{0}+c\right|}{\sqrt{a^{2}+b^{2}}}=\frac{|2 \cdot 0+4 \cdot 3+9|}{\sqrt{2^{2}+4^{2}}}=\frac{21}{\sqrt{20}}=\frac{21 \sqrt{20}}{20}=\frac{21 \sqrt{5}}{10} \approx 4.7$.

Method 2

The distance between two lines is defined to be the perpendicular distance between them. The slope of the above two lines is $-\frac{1}{2}$, and the perpendicular line has a slope of 2 . The reason is the fact that the product of slopes for two perpendicular lines equals -1 .

Thus, perpendicular passing through both lines has an equation $y=2 x+c$.
Take a point on the first line $x+2 y=6$, let's say $(0,3)$. From this point we can find coefficient c in a perpendicular line $y=2 x+c$ passing thought this point

$$
\begin{gathered}
3=2 * 0+c \\
c=3
\end{gathered}
$$

Find the intersection point of perpendicular line $y=2 x+3$ and line
$2 x+4 y=-9$

$$
\left\{\begin{array}{c}
y=2 x+3 \\
2 x+4 y=-9
\end{array}\right.
$$

$$
\begin{gathered}
\left\{\begin{array}{c}
y=2 x+3 \\
2 x+4(2 x+3)=-9
\end{array}\right. \\
\left\{\begin{array}{c}
y=2 x+3 \\
2 x+8 x+12=-9
\end{array}\right. \\
\left\{\begin{array}{c}
y=2 x+3 \\
10 x=-21
\end{array}\right. \\
\left\{\begin{array}{c}
y=2 x+3 \\
x=-2.1
\end{array}\right. \\
\left\{\begin{array}{c}
y=7.2 \\
x=-2.1
\end{array}\right.
\end{gathered}
$$

Now, we have two points on both lines $((0,3)$ and $(-2.1,7.2)$). Also both of them lie on the perpendicular line. We can use the formula for the distance between these points:

$$
\begin{gathered}
d=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}} \\
d=\sqrt{(0+2.1)^{2}+(3-7.2)^{2}}=\sqrt{4.41+17.64}=\sqrt{22.05} \approx 4.7
\end{gathered}
$$

Method 3

We can also choose the other way to find distance between two parallel lines.
If equations of parallel lines are $a x+b y+c=0$ and $a x+b y+c_{1}=0$, then the perpendicular distance between them is given by

$$
d=\frac{\left|c-c_{1}\right|}{\sqrt{a^{2}+b^{2}}}
$$

First rewrite equations of two given lines so that coefficients of x and y are the same in equations of two lines. For given lines it can be done as

$$
\begin{gathered}
2 x+4 y-12=0 \\
2 x+4 y+9=0
\end{gathered}
$$

Then, using the formula given,

$$
d=\frac{|-12-9|}{\sqrt{2^{2}+4^{2}}}=\frac{21}{\sqrt{20}}=\frac{21 \sqrt{20}}{20} \approx 4.7
$$

Answer: 4.7

