Answer on Question \#53015 - Math - Analytic Geometry

Find the value of k so that the line $y+5=k(x-3)$ is numerically 3 unit distant from the origin.

Solution

$y=k(x-3)-5$
Let's write the equation of a line in the normal form:
$A x+B y=C$,
$A x+B y-C=0$
$k x-y-3 k-5=0$
$A=k, B=-1, C=3 k+5$

Let's normalize the equation of the line dividing it by the square root of $\sqrt{A^{2}+B^{2}}$ or multiplying by $\frac{1}{\sqrt{A^{2}+B^{2}}}$.
$\frac{A}{\sqrt{A^{2}+B^{2}}} x+\frac{B}{\sqrt{A^{2}+B^{2}}} y-\frac{C}{\sqrt{A^{2}+B^{2}}}=0$
$\sqrt{A^{2}+B^{2}}=\sqrt{k^{2}+1}$
$\frac{k}{\sqrt{k^{2}+1}} x+\frac{-1}{\sqrt{k^{2}+1}} y-\frac{3 k+5}{\sqrt{k^{2}+1}}=0$
This normalized equation contains very important information: the coordinates of the unit normal vector $\vec{n}=\left(\frac{k}{\sqrt{k^{2}+1}}, \frac{-1}{\sqrt{k^{2}+1}}\right)$ and the distance from the origin $d=\left|\frac{3 k+5}{\sqrt{k^{2}+1}}\right|$:

According to the statement of the problem: $\left|\frac{3 k+5}{\sqrt{k^{2}+1}}\right|=3$.
Let's solve the equation and find the value (or values) of k.

$$
\begin{aligned}
& \frac{3 k+5}{\sqrt{k^{2}+1}}= \pm 3 \\
& \frac{(3 k+5)^{2}}{k^{2}+1}=9 \Rightarrow \frac{9 k^{2}+30 k+25-9 k^{2}-9}{k^{2}+1}=0 \\
& \frac{30 k+16}{k^{2}+1}=0 \Rightarrow 30 k+16=0 \Rightarrow k=-\frac{8}{15} .
\end{aligned}
$$

So, the equation of the line $y+5=k(x-3)$ which is numerically 3 unit distant from the origin is

$$
y+5=-\frac{8}{15}(x-3)
$$

Now, let's check the answer: $d=\left|\frac{3 \cdot\left(-\frac{8}{15}\right)+5}{\sqrt{\frac{64}{225}+1}}\right|=\left|\frac{-\frac{8}{5}+5}{\sqrt{\frac{289}{225}}}\right|=\left|\frac{\frac{17}{5}}{\frac{17}{15}}\right|=3$.
Answer: $k=-\frac{8}{15}$.

