Answer on Question \#52950 - Math - Complex Analysis

does multiplication of two imaginary numbers imaginary or real? if i multiply $2 i$ and $3 i$ then it is $=-6$ which is real .if $\mathrm{V}-3$ and $\mathrm{v}-2$ are multiplied then it gives -V 6 which is real . but if i do the same thing like this $\sqrt{ }-3 * \vee-2=\sqrt{ }\{(-3) *(-2)\}=\sqrt{ } 6$ which is also real . so why the ans is -V 6 . we know multiplication of two complex numbers is a complex number. if i write $2 i$ as $(0+2 i)$ and $3 i$ as $(0+3 i)$ and then multiply these two should come a complex number as definition . but why it's real?

Solution

$(i)^{2}=(-i)^{2}=-1$ so $\sqrt{-1}= \pm i$.
Thus $\sqrt{-3}= \pm i \sqrt{3}, \sqrt{-2}= \pm i \sqrt{2}$
and $\sqrt{(-3)(-2)}=(\pm i \sqrt{3})(\pm i \sqrt{2})= \pm(i)^{2} \sqrt{6}= \pm \sqrt{6}$.
Every real number is a complex number with imaginary part equal to 0 .

$$
(0+2 i)(0+3 i)=0 * 0-2 * 3+(0 * 2 i+0 * 3 i)=-6+0 i
$$

So we have the complex number with imaginary part equals 0 , i.e. the real number.

