Answer on Question \#52829-Math - Analytic Geometry

Show that the point $A(2,-6,0), B(4,-9,6), C(5,0,2), D(7,-3,8)$ are concyclic.

Solution

First of all, for A, B, C and D to be concyclic they all should lie in a single plane. It is true if the following condition holds:

$$
\overrightarrow{A B} \cdot(\overrightarrow{A C} \times \overrightarrow{A D})=0
$$

Since $\overrightarrow{A B}=(4,-9,6)-(2,-6,0)=(2,-3,6), \overrightarrow{A C}=(5,0,2)-(2,-6,0)=(3,6,2)$ and
$\overrightarrow{A D}=(7,-3,8)-(2,-6,0)=(5,3,8)$, we obtain
$\overrightarrow{A B} \cdot(\overrightarrow{A C} \times \overrightarrow{A D})=\left|\begin{array}{ccc}3 & -3 & 6 \\ 3 & 6 & 2 \\ 5 & 3 & 8\end{array}\right|=3\left|\begin{array}{ll}6 & 2 \\ 3 & 8\end{array}\right|+3\left|\begin{array}{ll}3 & 2 \\ 5 & 8\end{array}\right|+6\left|\begin{array}{ll}3 & 6 \\ 5 & 3\end{array}\right|=3 \cdot 42+3 \cdot 14-6 \cdot 21=$

$$
=42 \neq 0
$$

It means that these 4 points don't lie in a single plane and therefore they can't be concyclic.
Answer: not concyclic.

