Answer on Question \#52828 - Math - Analytic Geometry

Find the equation of cone with vertex (alpha,beta,gama) and base $\mathrm{y} 2-4 \mathrm{ax}=0, \mathrm{z}=0$.

Solution

Any line through vertex (α, β, γ) is $\frac{x-\alpha}{l}=\frac{y-\beta}{m}=\frac{z-\gamma}{n}$.

Any point on this line is $(x, y, z)=(l r+\alpha, m r+\beta, n r+\gamma)$.

It will lie on the given parabola $y^{2}-4 a x=0, z=0$ if, for the same value of r, we have

$$
\left\{\begin{array}{l}
n r+\gamma=0 \\
(m r+\beta)^{2}-4 \cdot a(l r+\alpha)=0
\end{array}\right.
$$

Then

$$
\left\{\begin{array} { l }
{ r = - \gamma / n } \\
{ (m r + \beta) ^ { 2 } - 4 \cdot a (l r + \alpha) = 0 }
\end{array} \Rightarrow \left\{\begin{array}{l}
r=-\gamma / n \\
\left(\beta-\gamma \frac{m}{n}\right)^{2}-4 \cdot a\left(\alpha-\gamma \frac{l}{n}\right)=0
\end{array}\right.\right.
$$

So, eliminating $l, \mathrm{~m}, \mathrm{n}$

$$
\begin{aligned}
& \left(\beta-\gamma \frac{m}{n}\right)^{2}-4 \cdot a\left(\alpha-\gamma \frac{l}{n}\right)=0 \Rightarrow(\beta n-\gamma m)^{2}-4 \cdot a n(\alpha n-\gamma l)=0 \\
& (\beta(z-\gamma)-\gamma(y-\beta))^{2}-4 \cdot a \alpha(z-\gamma)^{2}+4 a \gamma(z-\gamma)(x-\alpha)=0
\end{aligned}
$$

The equation of cone is $z^{2}\left(\beta^{2}-4 a \alpha\right)+4 a \gamma x z+4 a \alpha \gamma z-2 \beta \gamma y z-4 a \gamma^{2} x+\gamma^{2} y^{2}=0$.

