## Answer on Question \#52766 - Math - Integral Calculus

Using the Table of Integrals solve the following integrals:
(Make sure to state which equation you use)
a) $\int 1 /\left(25+x^{\wedge} 2\right) d x$

## Solution

$\int \frac{1}{25+x^{2}} d x=\frac{1}{5} \arctan \frac{x}{5}+c$,
where $c$ is an arbitrary real constant.
We used the following formula $\int \frac{1}{a^{2}+x^{2}} d x=\frac{1}{a} \arctan \frac{x}{a}+c$, where $c$ is an arbitrary real constant.
b) $\int x /\left((x+3)^{\wedge} 2\right) d x$

## Solution

$\int \frac{x}{(x+3)^{2}} d x=\int \frac{(x+3)-3}{(x+3)^{2}} d x=\int \frac{(x+3)}{(x+3)^{2}} d x-\int \frac{3}{(x+3)^{2}} d x=\int \frac{(x+3) d(x+3)}{(x+3)^{2}}-3 \int \frac{d(x+3)}{(x+3)^{2}}=$
$=|x+3=t|=\int \frac{t d t}{t^{2}}-3 \int \frac{d t}{t^{2}}=\int \frac{d t}{t}+3 \int\left(-\frac{1}{t^{2}}\right) d t=\ln |t|+\frac{3}{t}+C=\ln |x+3|+\frac{3}{x+3}+C$,
where $C$ is an arbitrary real constant.
We used the following formulae:
$\int \frac{d t}{t}=\ln |t|+C$,
$\int t^{n} d t=\frac{t^{n+1}}{n+1}+C, n \neq-1$,
where $C$ is an arbitrary real constant.

