Answer on Question \#52640 - Math - Trigonometry

what is the actual value of $, \arctan [(-1) /(1)], \operatorname{arc} \tan [(1) /(-1)]$. do they have different value? then why ? both looks like arc $\tan [-1]$ which is -pi/4. so now what is the actual value of $\operatorname{arc} \sin [(-15) /(17)], \operatorname{arc} \tan [(15) /(-17)]$. do they have different value like arc \tan or do they have same value ? then why ???

Solution

Since none of the six trigonometric functions are one-to-one, they are restricted in order to have inverse functions. Using function in the sense of multivalued functions, the function $y=\arctan (x)$ is defined so that $\tan (y)=x$. There are multiple numbers y such that $\tan (\mathrm{y})=\mathrm{x}$; for example, $\tan \left(-\frac{\pi}{4}\right)=-1$, but also $\tan \left(\frac{3 \pi}{4}\right)=-1, \tan \left(-\frac{5 \pi}{4}\right)=-1$, etc. When only one value is desired, the function may be restricted to its principal branch. With this restriction, for each x in the domain the expression $\arctan (x)$ will be evaluated only to a single value, called its principal value. Principal branch for $\arctan (\mathrm{x})$ is $-\frac{\pi}{2} \leq y<\frac{\pi}{2}$.

Thus $\arctan (-1)=-\frac{\pi}{4}$ lies in quadrant IV where $\sin (x)<0, \cos x>0$.
Principal branch for $\arcsin (\mathrm{x})$ is $-\frac{\pi}{2} \leq y<\frac{\pi}{2}$.
Thus $\arcsin \left(-\frac{15}{17}\right)$ lies in quadrant IV where $\sin (x)<0, \cos x>0$.

