Question \#51816

Without using tables, find the value of $\sin 600^{\circ} \cos 600^{\circ}$.

Solution.

Using double angle formula for sin, we have:

$$
\begin{aligned}
\sin 600^{\circ} \cos 600^{\circ}= & \frac{1}{2} \cdot 2 \cdot \sin 600^{\circ} \cos 600^{\circ}=\frac{1}{2} \cdot \sin 2 \cdot 600^{\circ}=\frac{1}{2} \sin 1200^{\circ} \\
& \frac{1}{2} \sin 1200^{\circ}=\frac{1}{2} \sin \left(1080^{\circ}+120^{\circ}\right)
\end{aligned}
$$

Using, that sine has the smallest positive period 360°, we can rewrite:
$\frac{1}{2} \sin \left(1080^{\circ}+120^{\circ}\right)=\frac{1}{2} \sin \left(3 \cdot 360^{\circ}+120^{\circ}\right)=\frac{1}{2} \sin 120^{\circ}=\frac{1}{2} \sin \left(180^{\circ}-60^{\circ}\right)=\frac{1}{2} \sin 60^{\circ}$

$$
\frac{1}{2} \sin 60^{\circ}=\frac{1}{2} \cdot \frac{\sqrt{3}}{2}=\frac{\sqrt{3}}{4}
$$

Answer: $\frac{\sqrt{3}}{4}$.

