Answer on Question \#51672 - Math - Integral Calculus

I want to integrate this $\int x \sqrt{a^{2}-x^{2}} d x$, let $\mathrm{x}=\mathrm{a} * \sin (\mathrm{z})$; differentiating both sides with respect to x, it becomes
$1=a^{*} \cos (z) d z / d x$ or $d x=a^{*} \cos (z) d z$.
If I differentiate both side with respect to z , it becomes
$\mathrm{dx} / \mathrm{dz}=\mathrm{a}^{*} \cos (\mathrm{z}) \quad$ or $\mathrm{dx}=\mathrm{a}^{*} \cos (\mathrm{z}) \mathrm{dz}$.
My question is which one is correct? Differentiating with respect of x or with respect of z and why?

Solution

Both versions are correct. Your purpose is to find $d x$ in form: $d x=f(z) d z$.

$$
\frac{d x}{d z}=\frac{1}{\frac{d z}{d x}}
$$

So, it doesn't matter how to do differentiation: $d x / d z=f(z) ; d z / d x=1 / f(z)$.
From these two cases we obtain: $\mathrm{dx}=\mathrm{f}(\mathrm{z}) \mathrm{dz}$.

P.S.

Method 1

I show you an easier way:
$\int x \sqrt{a^{2}-x^{2}} d x=|\mathrm{d}(\mathrm{x} 2)=2 \mathrm{xdx}|=\frac{1}{2} \int \sqrt{a^{2}-x^{2}} d\left(x^{2}\right)=\frac{a}{2} \int \sqrt{1-\frac{x^{2}}{a^{2}}} d\left(x^{2}\right)=$ $-\frac{a^{3}}{2} \int \sqrt{1-\frac{x^{2}}{a^{2}}} d\left(-\frac{x^{2}}{a^{2}}\right)=$ $=-\frac{a^{3}}{2} \int \sqrt{1-\frac{x^{2}}{a^{2}}} d\left(1-\frac{x^{2}}{a^{2}}\right)=\left|1-\frac{x^{2}}{a^{2}}=z\right|=-\frac{a^{3}}{2} \int z^{\frac{1}{2}} d z=-\frac{2 a^{3}}{3 * 2} z^{\frac{3}{2}}+C=-\frac{a^{3}}{3}\left(1-\frac{x^{2}}{a^{2}}\right)^{\frac{3}{2}}+$ $C=-\frac{1}{3}\left(a^{2}-x^{2}\right)^{\frac{3}{2}}+C$,
where C is an arbitrary real constant.

Method 2

This method is a straightforward consequence of your question.
Assume that $\sqrt{a^{2}-x^{2}}=\sqrt{a^{2}-a^{2} \sin ^{2} z}=\sqrt{a^{2} \cos ^{2} z}=a|\cos z|=a \cdot \cos z$. Then
$\int x \sqrt{a^{2}-x^{2}} d x=|x=a \cdot \sin z, d x=a \cdot \cos z d z|=\int a \cdot \sin z \cdot a^{2} \frac{\cos ^{2} z d z}{2}=-\frac{a^{3}}{2} \int \cos ^{2} z$. $(-\sin z d z)=-\frac{a^{3}}{2} \int \cos ^{2} z d(\cos z)=-\frac{a^{3}}{2} \frac{\cos ^{3} z}{3}+C=-\frac{a^{3}}{3}\left(1-\frac{x^{2}}{a^{2}}\right)^{\frac{3}{2}}+C=-\frac{1}{3}\left(\boldsymbol{a}^{2}-\boldsymbol{x}^{2}\right)^{\frac{3}{2}}+$ C,
where C is an arbitrary real constant.

