Answer on Question \#51655 - Math - Calculus

For the following functions determine the domain, co-domain and range:

$$
\begin{aligned}
& f(x)=(x-1)^{\wedge} 2+2 x \\
& g(x)=\cos (2 x)+1
\end{aligned}
$$

Using $f(x) \& g(x)$ calculate:
$f+g$
$f-g$
f * g
g/f

Solution

$f(x)=(x-1)^{2}+2 x=x^{2}-2 x+1+2 x=x^{2}+1$
The domain of $f(x)$ is the set of all the values that x is allowed to take on.
The range of $f(x)$ is the set of all y -coordinates, where $y=f(x)$.
What may possibly come out of a function is called the co-domain.
What actually comes out of a function is called the range.
The domain of $f(x)$ is $(-\infty ;+\infty)$;
the range of $f(x)$ is $[1 ;+\infty)$;
the co-domain of $f(x)$ is $(-\infty ;+\infty)$.
$g(x)=\cos (2 x)+1$
The domain of $g(x)$ is $(-\infty ;+\infty)$;
the range of $g(x)$ is $[0 ; 2]$;
the co-domain of $g(x)$ is $(-\infty ;+\infty)$.
$f+g=x^{2}+1+\cos (2 x)+1=x^{2}+\cos (2 x)+2$
$f-g=x^{2}+1-\cos (2 x)-1=x^{2}-\cos (2 x)$
$f * g=\left(x^{2}+1\right) *(\cos (2 x)+1)=x^{2} \cos (2 x)+x^{2}+\cos (2 x)+1$
$\frac{g}{f}=\frac{\cos (2 x)+1}{x^{2}+1}=\frac{\cos ^{2} x-\sin ^{2} x+\cos ^{2} x+\sin ^{2} x}{x^{2}+1}=\frac{2 \cos ^{2} x}{x^{2}+1}$.

