Answer on question \#51649, Math, Statistics and Probability

Question The masses of packages from a particular machine are normally distributed with a mean of 200 g and a standard deviation of 2 g . Find the probability that a randomly selected package from the machine weighs: Less than 196 g Between 198.5 g and 199.5 g

Solution So we have normal distribution here. Hence, to find probabilities we have to compute numerically integrals of type

$$
P\left(x_{1}<x<x_{2}\right) \int_{x_{1}}^{x_{2}} \frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
$$

where μ is mean and σ is standard deviation. We have $\mu=200$ and $\sigma=2$. For the first case $x_{1}=-\infty, x_{2}=196$. Hence

$$
P=\int_{-\infty}^{96} \frac{1}{2 \sqrt{2 \pi}} e^{-\frac{(x-200)^{2}}{2 \cdot 2^{2}}} \approx 0.022750
$$

For the second case $x_{1}=198.5, x_{2}=199.5$. Hence

$$
P=\int_{198.5}^{199.5} \frac{1}{2 \sqrt{2 \pi}} e^{-\frac{(x-200)^{2}}{2 \cdot 2^{2}}} \approx 0.174666
$$

The numerical computation was done using Wolfram Mathematica 6.0. The command is
Probability[198.5 < x < 199.5,x \approx NormalDistribution[200, 2]]

