Answer on Question \#51628 - Math - Functional Analysis

Question. If $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ then the domain of $g \circ f$ is X and co-domain is Z. What is the domain and co-domain of $f \circ g, f \circ f, g \circ g$, here in this case?
Solution. Notice that the composition of map $g \circ f$ is possible only when the codomain (the image) of f coincides with the domain of g. In other words, we could write the composition of arrows:

$$
g \circ f: X \xrightarrow{f} Y \xrightarrow{g} Z .
$$

However, in general, neither of the compositions $f \circ g, f \circ f, g \circ g$ are possible.
Nevertheless, if $f \circ g$ is defined, then we should have that $Z=X$:

$$
f \circ g: Y \xrightarrow{g} Z=X \xrightarrow{f} Y .
$$

In this case Y is the domain and co-domain of $f \circ g$.
Similarly, if $f \circ f$ is defined, then we should have that $X=Y$:

$$
f \circ f: X \xrightarrow{f} Y=X \xrightarrow{f} Y .
$$

In this case $X=Y$ is the domain and co-domain of $f \circ f$.
By the same reason, if $g \circ g$ is defined, then we should have that $Y=Z$:

$$
g \circ g: Y \xrightarrow{g} Z=Y \xrightarrow{g} Z .
$$

In this case $Y=Z$ is the domain and co-domain of $f \circ f$.

Answer.

1) The composition $f \circ g$ is defined only for $Z=X$, and in this case Y is the domain and co-domain of $f \circ g$.
2) The composition $f \circ f$ is defined only for $X=Y$, and in this case $X=Y$ is the domain and co-domain of $f \circ f$.
3) The composition $g \circ g$ is defined only for $Y=Z$, and in this case $Y=Z$ is the domain and co-domain of $g \circ g$.
