Answer on Question \#51588 - Math - Calculus

Find the geometric series whose sum is 1 and first term is 0.4

Given

$a_{1}=0.4 \quad$ - the first term of geometric series
$S=1 \quad$ - the sum of geometric series

Find common ratio r and geometric series $a_{1}, a_{2}, a_{3}, a_{4}, \ldots$.

Solution

The sum of a certain number of terms of a geometric sequence:

$$
S_{n}=\sum_{i=1}^{n} a_{i}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}
$$

where S_{n} is the sum of n terms ($\boldsymbol{n}^{\text {th }}$ partial sum), a_{1} is the first term, r is the common ratio.

The $n^{\text {th }}$ term of a geometric sequence:

$$
a_{n}=a_{1} r^{n-1}
$$

where a_{1} is the first term of the sequence, r is the common ratio, n is the number of the term.
If $-1<r<1$, the sum S_{n} converges to the geometric series, where the sum is given by

$$
\begin{equation*}
S=\frac{a_{1}}{1-r} \tag{1}
\end{equation*}
$$

Solve equation (1) for r :

$$
\begin{gathered}
1=\frac{0.4}{1-r} \\
1-r=0.4, \\
r=1-0.4 \\
r=0.6
\end{gathered}
$$

Then compute

$$
\begin{aligned}
& a_{2}=a_{1} r^{1}=0.4 \cdot 0.6=0.24, a_{3}=a_{1} r^{2}=0.4 \cdot 0.6^{2}, a_{4}=a_{1} r^{3}=0.4 \cdot 0.6^{3} \\
& a_{n}=a_{1} r^{n-1}=0.4 \cdot 0.6^{n-1}
\end{aligned}
$$

In this case the geometric series is $0.4+0.24+0.144+0.0864+\ldots .$.
If $r>1$ or $r<-1$ the sum S_{n} diverges, solution is valid only when a partial sum and value of n are known.

