Answer on Question \#51526 - Math - Statistics and Probability

Question

The average monthly electric bill of a random sample of 100 residents of a city is $\$ 90$ with a standard deviation of $\$ 24$. Construct a 95% confidence interval for the mean monthly electric bills of all residents.

Solution

$n=100$
$\bar{X}=90$
$\sigma=24$
$\gamma=95 \% \Rightarrow \alpha=5 \%=0.05$
$S^{2}=\frac{n}{n-1} \sigma^{2}$
$S=\sqrt{\frac{n}{n-1}} \sigma=\sqrt{\frac{100}{99}} 24=24.12$
$P\left(\bar{X}-t_{1-\frac{\alpha}{2}, n-1} \frac{S}{\sqrt{n}} \leq \mu \leq \bar{X}+t_{1-\frac{\alpha}{2}, n-1} \frac{S}{\sqrt{n}}\right)=1-\alpha$
where ${ }^{t_{1-\frac{\alpha}{2}, n-1}} 1-\frac{\alpha}{2}$-level quantile of Student's t-distribution with $n-1$ degrees of freedom. ${ }_{t_{1-\frac{0.05}{2}, 100-1}}=1.984$. Then
$t_{1-\frac{\alpha}{2}, n-1} \frac{S}{\sqrt{n}}=1.984 \frac{24.12}{\sqrt{100}}=4.785408$, so
$90-4.785408 \leq \mu \leq 90+4.785408$
$85.215 \leq \mu \leq 94.785$
is 95% confidence interval for the mean monthly electric bills of all residents.

