Answer on Question \#51525 - Math - Statistics and Probability

Question

The average monthly electric bill of a random sample of 100 residents of a city is $\$ 90$ with a standard deviation $\$ 24$. Construct a 90% confidence interval for the mean monthly electric bill of all residents.

Solution

We have $n=100 ; \bar{x}=90 ; \sigma=24 ; 1-\alpha=0.9 \Rightarrow \alpha=0.1$.
Using the Student's table we find $t(\alpha, n-1)=t(0.1,99)=1.6604$.
Since $\sigma=\sqrt{\frac{1}{n} \sum_{j=1}^{n}\left(x_{j}-\bar{x}\right)^{2}}=24$ then
$\sum_{j=1}^{n}\left(x_{j}-\bar{x}\right)^{2}=576 \cdot 100=57600$ and "corrected" standard deviation is equal to
$s=\sqrt{\frac{1}{n-1} \sum_{j=1}^{n}\left(x_{j}-\bar{x}\right)^{2}}=\sqrt{\frac{57600}{99}} \approx 24.12$.
The required confidence interval has the following form:
$\bar{x}-t(\alpha, n-1) \frac{s}{\sqrt{n}}<a<\bar{x}+t(\alpha, n-1) \frac{s}{\sqrt{n}} \Leftrightarrow a \in\left(90-1.6604 \cdot \frac{24.12}{10} ; 90+1.6604 \cdot \frac{24.12}{10}\right)$ $\Leftrightarrow a \in(85.995 ; 94.005)$.

Answer: (85.995; 94.005).

