Answer on Question \#51516 - Math - Differential Geometry

Question

1) Find the point of maximum curvature on the graph of $y=e^{x}$
2) Find the minimum and maximum curvatures of ellipse $r(t)=\left(a * \cos t, b^{*} \sin t\right), 0<=t<=2 p i$, where $a>b$.

Solution

1) Curvature is given by

$$
\mathrm{k}(\mathrm{x})=\frac{y^{\prime \prime}}{\left(1+\left(y^{\prime}\right)^{2}\right)^{3 / 2}}=\frac{e^{x}}{\left(1+e^{2 x}\right)^{3 / 2}} .
$$

To find the point of maximum, we can start with the first derivative of function $k(x)$:

$$
\begin{gathered}
k^{\prime}(x)=\frac{e^{x}\left(1+e^{2 x}\right)^{\frac{3}{2}}-\left(\frac{3}{2}\right)\left(1+e^{2 x}\right)^{\frac{1}{2}} * 2 * e^{2 x} e^{x}}{\left(1+e^{2 x}\right)^{3}}=0 ; \\
k^{\prime}(x)=\frac{e^{x}\left(1+e^{2 x}\right)^{\frac{1}{2}}}{\left(1+e^{2 x}\right)^{3}}\left(1+e^{2 x}-3 e^{2 x}\right)=0 ; \\
k^{\prime}(x)=\frac{e^{x}\left(1+e^{2 x}\right)^{\frac{1}{2}}}{\left(1+e^{2 x}\right)^{3}}\left(1-2 e^{2 x}\right)=0 ; \\
e^{2 x}=\frac{1}{2} ; \\
x_{0}=\frac{1}{2} \ln \frac{1}{2} .
\end{gathered}
$$

$k^{\prime}(x)$ is going to be negative for x greater than x_{0} and positive for $x<x_{0}$. By the first sufficient condition of maximum, x_{0} is the maximum value of curvature $k(x)$.

Answer: $x_{0}=\frac{1}{2} \ln \frac{1}{2}$.
2) $\mathrm{x}(\mathrm{t})=\operatorname{acos} \mathrm{t} ; \mathrm{y}(\mathrm{t})=\mathrm{bsin} \mathrm{t}, 0 \leq t \leq 2 \pi$.

Curvature is given by

$$
\begin{aligned}
\mathrm{k}(\mathrm{t})=\frac{x^{\prime} y^{\prime \prime}-y^{\prime} x^{\prime \prime}}{\left(x^{\prime 2}+y^{\prime}\right)^{\frac{3}{2}}} & =\frac{a b \sin (t) \sin (\mathrm{t})+a b \cos (t) \cos (t)}{\left((-\operatorname{asin}(t))^{2}+(b \cos (t))^{2}\right)^{\frac{3}{2}}}=\frac{a b\left(\sin ^{2}(\mathrm{t})+\cos ^{2}(\mathrm{t})\right)}{\left((\operatorname{asin}(t))^{2}+(b \cos (t))^{2}\right)^{\frac{3}{2}}}= \\
& =\frac{a b}{\left((\operatorname{asin}(t))^{2}+(b \cos (t))^{2}\right)^{3 / 2}}=\frac{a b}{\left(b^{2}+\left(a^{2}-b^{2}\right) \sin ^{2}(t)\right)^{3 / 2}}
\end{aligned}
$$

This quantity is minimum when denominator is maximum, i.e. for $\sin ^{2} t=1$ where $a>b$. The minimum curvature points are at $\mathbf{t}=\mathbf{t}_{\text {min }}=\boldsymbol{\pi} / \mathbf{2} ; \mathbf{3 \pi / 2}$, hence $\mathbf{x}=\mathbf{0 ;} \mathbf{y}=\mathbf{\pm} \mathbf{b}$ and the minimum curvature is $\mathbf{k}_{\text {min }}=\frac{a b}{a^{3}}=\frac{b}{a^{2}}$, where $a>b$.

This quantity is maximum when denominator is minimum, i.e. for $\sin ^{2} t=0$ where $a>b$. The maximum curvature points are at $\mathbf{t}=\mathbf{t}_{\text {max }}=\mathbf{0} ; \boldsymbol{\pi}$, hence $\mathbf{x}=\mathbf{\pm} \mathbf{a} \mathbf{y}=\mathbf{0}$ and the maximum curvature is $\mathbf{k}_{\text {max }}=\frac{a b}{b^{3}}=\frac{a}{b^{2}}$, where $a>b$.

Note that the maximum curvature is $\mathbf{k}_{\text {max }}=\frac{\boldsymbol{b}}{\boldsymbol{a}^{2}}$ and the minimum curvature is $\mathbf{k}_{\text {min }}=\frac{\boldsymbol{a}}{\boldsymbol{b}^{\mathbf{2}}}$, where $a<b$.

Answer: $k_{\text {min }}=b / a^{2} ; k_{\text {max }}=a / b^{2}$, where $a>b$.

