## Answer on Question \#51512 - Math - Differential Geometry

Find the Bezier curve where the control points are $\mathrm{P}(2,3), \mathrm{P} 1(2,0), \mathrm{P} 2(3,1), \mathrm{P} 3(4,4)$

## Solution

Since there are four control points, then we have cubic Bezier curve. Thus the explicit form of the Bezier curve is given by

$$
B(t)=(1-t)^{3} P+3(1-t)^{2} t P_{1}+3(1-t) t^{2} P_{2}+t^{3} P_{3}, t \in[0,1] .
$$

Hence

$$
\begin{aligned}
& B(t)=(1-t)^{3}\binom{2}{3}+3(1-t)^{2} t\binom{2}{0}+3(1-t) t^{2}\binom{3}{1}+t^{3}\binom{4}{4}=\binom{2(1-t)^{3}+6(1-t)^{2} t+9(1-t) t^{2}+4 t^{3}}{3(1-t)^{3}+3(1-t) t^{2}+4 t^{3}}= \\
& =\binom{2-6 t+6 t^{2}-2 t^{3}+6 t-12 t^{2}+6 t^{3}+9 t^{2}-9 t^{3}+4 t^{3}}{3-9 t+9 t^{2}-3 t^{3}+3 t^{2}-3 t^{3}+4 t^{3}}=\binom{2+3 t^{2}-t^{3}}{3-9 t+12 t^{2}-2 t^{3}}, t \in[0,1] .
\end{aligned}
$$

Answer: $B(t)=\left(2+3 t^{2}-t^{3}\right) \bar{i}+\left(3-9 t+12 t^{2}-2 t^{3}\right) \bar{j}, t \in[0,1]$.

