Answer on Question #51512 - Math - Differential Geometry

Find the Bezier curve where the control points are P(2,3),P1(2,0),P2(3,1),P3(4,4)

Solution

Since there are four control points, then we have cubic Bezier curve. Thus the explicit form of the Bezier curve is given by

$$B(t) = (1-t)^3 P + 3(1-t)^2 t P_1 + 3(1-t)t^2 P_2 + t^3 P_3, \ t \in [0,1].$$

Hence
$$B(t) = (1-t)^3 \binom{2}{3} + 3(1-t)^2 t \binom{2}{0} + 3(1-t)t^2 \binom{3}{1} + t^3 \binom{4}{4} = \binom{2(1-t)^3 + 6(1-t)^2 t + 9(1-t)t^2 + 4t^3}{3(1-t)^3 + 3(1-t)t^2 + 4t^3} =$$

$$= \binom{2-6t + 6t^2 - 2t^3 + 6t - 12t^2 + 6t^3 + 9t^2 - 9t^3 + 4t^3}{3-9t + 9t^2 - 3t^3 + 3t^2 - 3t^3 + 4t^3} = \binom{2+3t^2 - t^3}{3-9t + 12t^2 - 2t^3}, t \in [0,1].$$