If a random variable X has a cumulative distribution function $F(x)$ given by

$$
\begin{gathered}
0, x \leq 0 \\
F(x)=c\left(x-e^{\wedge(-x))}, 0<x<1\right.
\end{gathered}
$$

$$
1, x \geq 1
$$

then find its corresponding probability distribution function and hence calculate $P(0<x<1)$

Solution.

There was a mistake in assignment, because $F(x)$ is related to probability, but probability is not greater than 1.

A cumulative distribution function of X is given by

$$
F(x)=\left\{\begin{array}{cl}
0, & x \leq 0 \\
c\left(x-e^{-x}\right), & 0<x<1 \\
1, & x \geq 1
\end{array}\right.
$$

Probability distribution function $p(x)=\frac{d F}{d x}=\left\{\begin{array}{cl}0, & x \leq 0 \\ c\left(1+e^{-x}\right), & 0<x<1 \\ 0, & x \geq 1\end{array}\right.$ $P(0<X<1)=P(X<1)-P(X \leq 0)=F(1)-\lim _{x \rightarrow 0+} F(x)=1-c$.

