## Answer on Question \#51400 - Math - Algorithms | Quantitative Methods

The current in an electric circuit is given by $i=t \sin t$ where $t$ is the time in seconds. Using the bisection method, estimate the time required for the current to reach 1 amp (correct up to 2 decimal places)

## Solution

We must solve the equation $t \sin t-1=0$ using the bisection method.
The input for the method is a continuous function $f$, an interval $[a, b]$, and the function values $f(a)$ and $f(b)$. The function values are of opposite sign (there is at least one zero crossing within the interval). Each iteration performs these steps:

1. Calculate $c$, the midpoint of the interval, $c=0.5 *(a+b)$.
2. Calculate the function value at the midpoint, $f(c)$.
3. If convergence is satisfactory (that is, $a-c$ is sufficiently small, or $f(c)$ is sufficiently small), return $c$ and stop iterating.
4. Examine the sign of $f(c)$ and replace either $(a, f(a))$ or $(b, f(b))$ with $(c, f(c))$ so that there is a zero crossing within the new interval.

Let's start with values of $\mathrm{a}=0$ and $\mathrm{b}=2$.
$f(t)=t \sin t-1$
$f(0)=-1$
$f(2)=0.818595$
So, for example, on the first iteration we get $f\left(c_{n}\right)=-0.158529$ and so must replace the value of the left endpoint of interval $a$ with $c_{1}=1$ hence narrowing the interval.
Iteration process is represented by the following table:

| Iteration | $a_{n}$ | $b_{n}$ | $c_{n}$ | $f\left(c_{n}\right)$ |
| :--- | :--- | :--- | :--- | :--- |
| 1 | 0 | 2 | 1 | -0.158529 |
| 2 | 1 | 2 | 1.5 | 0.496242 |
| 3 | 1 | 1.5 | 1.25 | 0.186231 |
| 4 | 1 | 1.25 | 1.125 | 0.015051 |
| 5 | 1 | 1.125 | 1.0625 | -0.0718266 |
| 6 | 1.0625 | 1.125 | 1.09375 | -0.0283617 |
| 7 | 1.09375 | 1.125 | 1.10938 | -0.00664277 |
| 8 | 1.10938 | 1.125 | 1.11719 | 0.00421152 |
| 9 | 1.10938 | 1.11719 | 1.11328 | -0.00121128 |
| 10 | 1.11328 | 1.11719 | 1.11524 | 0.0014969 |

We see that root of the equation $t \sin t-1=0$ is 1.11524 with accuracy up to two decimal places.

