Answer on Question #51400 – Math – Algorithms | Quantitative Methods

The current in an electric circuit is given by i=t sin t where t is the time in seconds. Using the bisection method, estimate the time required for the current to reach 1 amp (correct up to 2 decimal places)

Solution

We must solve the equation $t \sin t - 1 = 0$ using the bisection method.

The input for the method is a continuous function f, an interval [a, b], and the function values f(a)and f(b). The function values are of opposite sign (there is at least one zero crossing within the interval). Each iteration performs these steps:

- 1. Calculate c, the midpoint of the interval, c = 0.5 * (a + b).
- 2. Calculate the function value at the midpoint, f(c).
- 3. If convergence is satisfactory (that is, a c is sufficiently small, or f(c) is sufficiently small), return c and stop iterating.
- 4. Examine the sign of f(c) and replace either (a, f(a)) or (b, f(b)) with (c, f(c)) so that there is a zero crossing within the new interval.

Let's start with values of a = 0 and b = 2.

$$f(t) = t \sin t - 1$$
$$f(0) = -1$$

$$f(2) = 0.818595$$

So, for example, on the first iteration we get $f(c_n) = -0.158529$ and so must replace the value of the left endpoint of interval *a* with $c_1 = 1$ hence narrowing the interval.

Iteration process is represented by the following table:

Iteration	a_n	b_n	C _n	$f(c_n)$
1	0	2	1	-0.158529
2	1	2	1.5	0.496242
3	1	1.5	1.25	0.186231
4	1	1.25	1.125	0.015051
5	1	1.125	1.0625	-0.0718266
6	1.0625	1.125	1.09375	-0.0283617
7	1.09375	1.125	1.10938	-0.00664277
8	1.10938	1.125	1.11719	0.00421152
9	1.10938	1.11719	1.11328	-0.00121128
10	1.11328	1.11719	1.11524	0.0014969

We see that root of the equation $t \sin t - 1 = 0$ is 1.11524 with accuracy up to two decimal places.

www.AssignmentExpert.com