## Answer on Question \#51354-Math - Calculus

A vertical container with base area measuring $a=14 \mathrm{~cm}$ by $b=17 \mathrm{~cm}$ is being filled with identical pieces of candy, each with a volume of $V_{c}=50.0 \mathrm{~mm}^{3}$ and a mass of $m_{c}=0.02 \mathrm{~g}$. Assume that the volume of the empty spaces between the candies is negligible. If the height of the candies in the container increases at the rate of $\frac{d h}{d t}=0.28 \frac{\mathrm{~cm}}{\mathrm{~s}}$, at what rate does the mass of the candies in the container increase?

## Solution

The density of candies is

$$
\rho=\frac{m_{c}}{V_{c}}=\frac{0.02 \mathrm{~g}}{50 \mathrm{~mm}^{3}}=\frac{2 \cdot 10^{-5} \mathrm{~kg}}{5 \cdot 10^{-8} \mathrm{~m}^{3}}=400 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}
$$

The cross-section of container is

$$
S=a \cdot b
$$

The volume of candies in the container

$$
V=S \cdot h=a \cdot b \cdot h,
$$

where $h$ is the height of the candies in the container.
The mass of the candies in the container is

$$
m=V \cdot \rho=a \cdot b \cdot h \cdot \rho
$$

The mass of candies in the container increase at the rate

$$
\frac{d m}{d t}=\frac{d(\rho \cdot a \cdot b \cdot h)}{d t}
$$

Since $a, b$ and $\rho$ are constants, we obtain

$$
\frac{d m}{d t}=\rho \cdot a \cdot b \frac{d h}{d t}=400 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \cdot 0.14 \mathrm{~m} \cdot 0.17 \mathrm{~m} \cdot 0.0028 \frac{\mathrm{~m}}{\mathrm{~s}}=26.656 \frac{\mathrm{~g}}{\mathrm{~s}}
$$

Answer: $\quad \frac{d m}{d t}=\frac{m_{c}}{V_{c}} \cdot a \cdot b \frac{d h}{d t}=26.656 \frac{\mathrm{~g}}{\mathrm{~s}}$.

