Answer on Question #51201 - Math - Set Theory

 $A = \{x \mid x \text{ is an odd number between 5 and 21}\}\$ is same as-----

- **a.** $A_a = \{5,7,9,11,13,15,17,19\}$
- **b.** $A_b = \{5,7,9,11,13,15,17,19,21\}$
- **c.** $A_c = \{x : x \text{ is an odd number between 5 and } 21\}$
- **d.** $A_d = \{7,9,11,13,15,17,19,21\}$

Solution

By the definition of origin set we have that if $x \in A$ then x is odd and 5 < x < 21. Let's check each of the given variants:

- **a.** $A_a = \{5,7,9,11,13,15,17,19\}$, since $5 \in A_a$ and $5 \not> 5$ then $A_a \neq A$
- **b.** $A_b = \{5,7,9,11,13,15,17,19,21\}$, since $5 \in A_b$ and $5 \not> 5$ then $A_b \neq A$
- **d.** $A_d = \{7,9,11,13,15,17,19,21\}$, since $21 \in A_d$ and $21 \neq 21$ then $A_d \neq A$
- **c.** $A_c = \{x : x \text{ is an odd number between 5 and } 21\}$, so if $x \in A_c$ then x is odd and 5 < x < 21.

Thus, if $x \in A_c$ then $x \in A$, and vice versa: if $x \in A$, then $x \in A_c$. This means that $A_c = A$

Answer: c.