Answer on Question\#51031 - Math - Trigonometry

Equation of line $B C$ is $2 x+y-10=0$. Point A is such that angle $A B C=$ angle $A C B=\alpha=30^{\circ}$. The sum of the slopes of line $A B$ and line $A C$ is?

Note: Could you please use trigonometry in solving this question?

Solution:

Let's rewrite the equation of line $B C$ in the following way

$$
y=10-2 x
$$

The slope of this line gives us the tangent of the angle which this line creates with x-axis. So

$$
\tan \varphi=-2
$$

Line $A B$ creates the angle $\varphi-\alpha$ with the x -axis and its slope is

$$
\tan (\varphi-\alpha)=\frac{\tan \varphi-\tan \alpha}{1+\tan \varphi \cdot \tan \alpha}=\frac{-2-\frac{1}{\sqrt{3}}}{1-\frac{2}{\sqrt{3}}}=\frac{2 \sqrt{3}+1}{2-\sqrt{3}}
$$

Line $A C$ creates the angle $\varphi+\alpha$ with the x -axis and its slope is

$$
\tan (\varphi+\alpha)=\frac{\tan \varphi+\tan \alpha}{1-\tan \varphi \cdot \tan \alpha}=\frac{-2+\frac{1}{\sqrt{3}}}{1+\frac{2}{\sqrt{3}}}=\frac{1-2 \sqrt{3}}{\sqrt{3}+2}
$$

The sum of slopes of lines $A B$ and $A C$ is

$$
\begin{aligned}
\tan (\varphi-\alpha)+ & \tan (\varphi+\alpha)=\frac{2 \sqrt{3}+1}{2-\sqrt{3}}+\frac{1-2 \sqrt{3}}{2+\sqrt{3}}= \\
& =\frac{(2 \sqrt{3}+1)(\sqrt{3}+2)+(1-2 \sqrt{3})(2-\sqrt{3})}{2^{2}-\sqrt{3}^{2}}=16
\end{aligned}
$$

If we consider the case when the point A lies under the line $B C$ the answer will be the same, since the angles which lines $A B$ and $A C$ create with x-axis will be $\varphi+\alpha$ and $\varphi-\alpha$ correspondingly. So the sum of slopes will be the same.

Answer: 16.

www.assignmentexpert.com

