Answer on Question \#50973 - Math-Calculus

Question:

Find the area of the bounded plane region R lying between curves $y=x^{\wedge} 2-2 x$ and $y=4-x^{\wedge} 2$.

Solution:

To solve this problem, we need a sketch so that we can determine which function is on top over which intervals. We will begin by determining the points of intersection.
$x^{2}-2 x=4-x^{2}$
$2 x^{2}-2 x-4=0$
$2\left(x^{2}-x-2\right)=0$
$2(x-2)(x+1)=0$
So $x=2$ or $x=-1$. Both functions are quadratic polynomials, so their graphs are parabolas, one opening up and the other down. We should recognize from the sign on x^{2} which curve is on top, or we can test a value of x to find out.

Thus, the area of the region can be gotten by applying our integral formula to obtain:

$$
\int_{-1}^{2}\left(4-x^{2}-\left(x^{2}-2 x\right)\right) d x=\left.\left(4 x-\frac{2 x^{3}}{3}+3 x^{2}\right)\right|_{-1} ^{2}=8-\frac{16}{3}+4-\left(-4+\frac{2}{3}+1\right)=9
$$

