Answer on Question #50896 – Math – Differential Calculus | Equations

Question

A mass m (in kg) acted on by a constant force p Newtons, moves a distance x in t sec. and acquires a velocity $v, \frac{m}{s}$.

Show that:

$$x = \frac{mv^2}{2gp} = \frac{gt^2p}{2m}$$

where g is the acceleration due to gravity.

Solution

Assumptions:

- 1. At the initial moment of time (t = 0) velocity of the mass is 0.
- 2. The mass moves only under mentioned above constant force.

Under such assumptions, we can use formulae:

- 1. A = Fl, where F force, l distance, A associated amount of work.
- 2. $m\ddot{l} = F$, where m mass, $\ddot{l} \text{acceleration}$. (Newton's Law)

3.
$$A = \frac{mv^2}{2}$$
 (Conservation Law)

Initial conditions:

1.
$$v(t = 0) = 0$$
.
2. $l(t = 0) = C$

2.
$$l(t=0) = C$$

Solve differential equation $m\ddot{l} = F$ (second formula):

 $\dot{l} = v = \int \frac{F}{m} dt = \frac{F}{m} t + C_1$, because F and m are constants, C_1 is an arbitrary real constant; $l = \int v dt = \int \left(\frac{F}{m}t + C_1\right) dt = \frac{F}{m}\frac{t^2}{2} + C_1t + C_2$, where C_1 and C_2 are arbitrary real constants. Use initial conditions:

$$v(0) = 0$$
, hence $C_1 = 0$;
 $l(0) = C$, hence $C_2 = C$.

Thus, $l = \frac{F}{m} \frac{t^2}{2} + C$.

Recall that x = l(t) - l(0):

$$x = \frac{F}{m}\frac{t^2}{2} + C - C = \frac{F}{m}\frac{t^2}{2}$$

Equate expressions for A in the first and the third formula:

$$Fl=\frac{mv^2}{2},$$

which yields

$$l=\frac{mv^2}{2F},$$

where l is such that l(t) - l(0) = x.

Put values of the quantities into obtained formulae:

$$x = \frac{pt^2}{2m}$$
$$x = \frac{mv^2}{2p}$$