Answer on Question \#50896 - Math - Differential Calculus | Equations

Question

A mass m (in kg) acted on by a constant force p Newtons, moves a distance x in t sec. and acquires a velocity $v, \frac{m}{s}$.

Show that:

$$
x=\frac{m v^{2}}{2 g p}=\frac{g t^{2} p}{2 m}
$$

where g is the acceleration due to gravity.

Solution

Assumptions:

1. At the initial moment of time $(t=0)$ velocity of the mass is 0 .
2. The mass moves only under mentioned above constant force.

Under such assumptions, we can use formulae:

1. $A=F l$, where F - force, l - distance, A - associated amount of work.
2. $m \ddot{l}=F$, where m - mass, $\ddot{l}-$ acceleration. (Newton's Law)
3. $A=\frac{m v^{2}}{2}$ (Conservation Law)

Initial conditions:

1. $v(t=0)=0$.
2. $l(t=0)=C$.

Solve differential equation $m \ddot{l}=F$ (second formula):
$\dot{l}=v=\int \frac{F}{m} d t=\frac{F}{m} t+C_{1}$, because F and m are constants, C_{1} is an arbitrary real constant; $l=\int v d t=\int\left(\frac{F}{m} t+C_{1}\right) d t=\frac{F}{m} \frac{t^{2}}{2}+C_{1} t+C_{2}$, where C_{1} and C_{2} are arbitrary real constants. Use initial conditions:

$$
\begin{aligned}
& v(0)=0, \text { hence } C_{1}=0 \\
& l(0)=C, \text { hence } C_{2}=C
\end{aligned}
$$

Thus, $l=\frac{F}{m} \frac{t^{2}}{2}+C$.
Recall that $x=l(t)-l(0)$:

$$
x=\frac{F}{m} \frac{t^{2}}{2}+C-C=\frac{F}{m} \frac{t^{2}}{2}
$$

Equate expressions for A in the first and the third formula:

$$
F l=\frac{m v^{2}}{2},
$$

which yields

$$
l=\frac{m v^{2}}{2 F}
$$

where l is such that $l(t)-l(0)=x$.
Put values of the quantities into obtained formulae:

$$
\begin{aligned}
& x=\frac{p t^{2}}{2 m} \\
& x=\frac{m v^{2}}{2 p}
\end{aligned}
$$

