Answer on Question\# \#50656 - Mathematics - Trigonometry

Question:

$\operatorname{Cos}^{\wedge}-1(-x)=$? Please explain the answer.

Solution:

Let us write some definitions.

A function f is said to be an even function if for any number $x, f(-x)=f(x)$.
A function f is said to be an odd function if for any number $x, f(-x)=-f(x)$.
A function $\cos ^{-1}(x)$ (or $\arccos (x)$, it is usually called arccosine function) is the inverse cosine function, defined to be the inverse of the restricted cosine function $\cos (x)$ at interval $0 \leq x \leq \pi$.

Arccosine is neither even nor odd function:

$$
\arccos (-x) \neq \pm \arccos (x)
$$

Let us show it:

$$
\begin{equation*}
\arccos (-x)=\arccos (-\cos (\arccos (x)))=\arccos (\cos (\pi-\arccos (x)))=\pi-\arccos (x) \tag{1}
\end{equation*}
$$

Here we used the following relations:

$$
\begin{gathered}
\cos (\pi-x)=-\cos (x) \\
\cos (\arccos (x))=x, \quad \text { when }-1 \leq x \leq 1 \\
\arccos (\cos (y))=y, \quad \text { when } 0 \leq y \leq \pi
\end{gathered}
$$

Using notation $\cos ^{-1}(x)$, the left-hand and right-hand sides of (1) give the following equality:

$$
\begin{equation*}
\cos ^{-1}(-x)=\pi-\cos ^{-1}(x) \tag{2}
\end{equation*}
$$

Answer: $\cos ^{-1}(-x)=\pi-\cos ^{-1}(x)$.

