Answer on Question \#50655 - Math -Trigonometry

$\operatorname{Sin}^{-1}(\cos \theta)=\left(\frac{\pi}{2}\right)-\theta$ or $\left(\frac{\pi}{2}\right)+\theta$ I think both are correct but not sure.?
Here my thinking
$\sin ^{\wedge}(-1)(\cos \theta \theta)=\sin \wedge(-1)(\sin ((\pi / 2)-\theta))=(\pi / 2)-\theta$

Or in another way
$\left.\left.\sin ^{\wedge}(-1)(\cos \theta)=\sin ^{\wedge}(-1)(\sin (\pi / 2)+\theta)\right)=(\pi / 2)+\theta\right)$
I want to differentiate $\operatorname{Sin}^{-1}(\cos \theta)$. So what should we differentiate $(\pi / 2)-\theta$ or $(\pi / 2)+\theta$. please let me know

Solution

You are right.

$$
\sin ^{-1}(\cos \theta)=\left(\frac{\pi}{2}\right)-\cos ^{-1}(\cos \theta)=\left(\frac{\pi}{2}\right)-\theta
$$

But

$$
\cos \theta=\cos (-\theta)
$$

So,

$$
\sin ^{-1}(\cos \theta)=\sin ^{-1}(\cos (-\theta))=\left(\frac{\pi}{2}\right)-\cos ^{-1}(\cos (-\theta))=\left(\frac{\pi}{2}\right)+\theta
$$

You need

$$
\begin{aligned}
& \frac{d}{d \theta}\left(\sin ^{-1}(\cos \theta)\right)=\frac{d}{d \cos \theta}\left(\sin ^{-1}(\cos \theta)\right) \cdot \frac{d}{d \theta}((\cos \theta))=-\frac{1}{\sqrt{1-(\cos \theta)^{2}}} \cdot \sin \theta=-\frac{\sin \theta}{|\sin \theta|} \\
&=-\operatorname{Sign}(\theta)
\end{aligned}
$$

where

$$
\operatorname{Sign}(\theta)=\left\{\begin{array}{c}
1, \text { when } \theta>0 \\
0, \text { when } \theta=0 \\
-1, \text { when } \theta<0
\end{array}\right.
$$

