## Answer on Question \#50654 - Math - Trigonometry

## Problem.

$2 \operatorname{Sin}^{\wedge}(-1) x=\operatorname{Sin} \wedge(-1)\left\{2 x^{*} V\left(1-x^{\wedge} 2\right)\right\}$ it's okay. but ithink it's proof is if we assume $x=\sin z$ ? $2 \operatorname{Sin}^{\wedge}(-1) x=\operatorname{Sin} \wedge(-1)\left\{2 x^{*} \sqrt{ }\left(1-x^{\wedge} 2\right)\right\}$ it's okay. but ithink
it's proof is
if we assume $x=\sin z$
$\sin ^{-1}\left(2 \sin z^{*} \operatorname{sqrt}\left(1-\sin ^{\wedge} 2 z\right)\right)$
$=\sin ^{-1}(2 \sin z \cos z)$
$=\sin ^{-1}(\sin 2 z)$
$=2 z$
$=2 \sin ^{-1} x$
$2 \cos ^{\wedge}(-1) x=\operatorname{Sin} \wedge(-1)\left\{2 x^{*} \sqrt{ }\left(1-x^{\wedge} 2\right)\right\}$ it's also okay
it's my thinking
if we assume $x=\cos z$
$\sin ^{-1}\left(2 \cos z^{*} \operatorname{sqrt}\left(1-\cos ^{\wedge} 2 z\right)\right)$
$=\sin ^{-1}(2 \cos z \sin z)$
$=\sin ^{-1}(\sin 2 z)$
$=2 z$
$=2 \cos ^{-1} x$
so now my question is are they both correct?
i want to differentiate this $\operatorname{Sin}^{\wedge}(-1)\left\{2 x^{*} \sqrt{ }\left(1-x^{\wedge} 2\right)\right\}$
so if we use $2 \sin ^{\wedge}-1 x$, then the answer will be $2 / \sqrt{ }\left(1-x^{\wedge} 2\right)$
and if we use $2 \cos ^{\wedge}-1 x$, then the answer will be $-2 / V\left(1-x^{\wedge} 2\right)$. there are two different answer after differentiate. please let me know.which one is correct or both correct??

## Solution:

In your proof there is a mistake $\sin ^{-1}(\sin 2 z)=2 z$ only for $-\frac{\pi}{2} \leq 2 z \leq \frac{\pi}{2}$.

Also the formula $2 \sin ^{-1} x=\sin ^{-1} x \sqrt{1-x^{2}}$ is correct only for $-\frac{\pi}{4} \leq x \leq \frac{\pi}{4}$.

$y(x)=2 \sin ^{-1} x$ black curve, $y(x)=\sin ^{-1} x \sqrt{1-x^{2}}$ red curve.
Also function $\sin ^{-1}\left(2 \sin z \sqrt{1-\sin ^{2} z}\right)$ and $\sin ^{-1}\left(2 \cos z \sqrt{1-\cos ^{2} z}\right)$ are different function of argument $x$, as in the first case $x=\sin z$ and in the second case $x=\cos z$, so they could have different derivatives and both is true.

