Answer on question\#50406

Use Mathematical Induction to prove the following:

$$
1^{2}+2^{2}+3^{2}+\cdots+n^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

Proof:
For $n=1$, the statement reduces to $1^{2}=\frac{1 \cdot 2 \cdot 3}{6}$ and is obviously true. Assuming the statement is true for $n=k$:
$1^{2}+2^{2}+3^{2}+\cdots+k^{2}=\frac{k(k+1)(2 k+1)}{6}$,
we will prove that the statement must be true for $n=k+1$:

$$
\begin{equation*}
1^{2}+2^{2}+3^{2}+\cdots+(k+1)^{2}=\frac{(k+1)(k+2)(2 k+3)}{6} \tag{2}
\end{equation*}
$$

The left-hand side of (2) can be written as
$1^{2}+2^{2}+3^{2}+\cdots+k^{2}+(k+1)^{2}$.
In view of (1), this simplifies to:

$$
\begin{aligned}
1^{2}+2^{2}+3^{2} & +\cdots+k^{2}+(k+1)^{2}=\frac{(k+1)(k+2)(2 k+3)}{6}+(k+1)^{2} \\
& =\frac{k(k+1)(2 k+1)+6(k+1)^{2}}{6} \\
& =\frac{(k+1)[k(2 k+1)+6(k+1)]}{6}=\frac{(k+1)(2 k 2+7 k+6)}{6} \\
& =\frac{(k+1)(k+2)(2 k+3)}{6}
\end{aligned}
$$

Thus the left-hand side of (2) is equal to the right-hand side of (2). This proves the inductive step. Therefore, by the principle of mathematical induction, the given statement is true for every positive integer n.

