Answer on Question \#50336 - Math - Algorithms | Quantitative Methods

a) Use Newton's method to approximate the root of the equation $x \sin x=1$ in $[0, p i / 2]$.

$$
x \sin x=1, \quad x \in\left[0, \frac{\pi}{2}\right] .
$$

Taking $\mathrm{x}=1$ as the initial guess calculate $\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3$ (Work to at least 6 decimal places).
b) Show that the equation

$$
x^{3}-3 x^{2}+2 x=1
$$

has no root in the interval $[-1,1]$

Solution:

a)

According to Newton`s method, we have

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}, \quad n=0,1,2 \ldots
$$

where

$$
f(x)=x \sin (x)-1 .
$$

First of all, we have to find $f^{\prime}(x)$. So

$$
f^{\prime}(x)=(x \sin (x)-1)^{\prime}=\sin (x)+x \cos (x)
$$

1 step.
$x_{1}=x_{0}-\frac{f\left(x_{0}\right)}{f \prime\left(x_{0}\right)}=1-\frac{1 \cdot \sin (1)-1}{\sin (1)+1 \cdot \cos (1)} \approx 1.1147286724, f^{\prime}\left(x_{0}\right) \neq 0$
2 step.
$x_{2}=x_{1}-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)}=1.1147286724-\frac{1.1147286724 \cdot \sin (1.1147286724)-1}{\sin (1.1147286724)+1.1147286724 \cdot \cos (1.1147286724)} \approx$ ≈ 1.1141571268

3 step.

$$
\begin{gathered}
x_{3}=x_{2}-\frac{f\left(x_{2}\right)}{f^{\prime}\left(x_{2}\right)}=1.1141571268-\frac{1.1141571268 \cdot \sin (1.1141571268)-1}{\sin (1.1141571268)+1.1141571268 \cdot \cos (1.1141571268)} \approx \\
\approx 1.1141571409
\end{gathered}
$$

b)

Denote

$$
f(x)=x^{3}-3 x^{2}+2 x-1
$$

This function is continuous on $[-1 ; 1]$.
Any function $f(x)$ that is continuous at each point of a segment $[a ; b]$ attains its largest and its smallest values, M and m, on that segment.

Note that the given function is differentiable on $[-1 ; 1]$.
Let $f(x)$ be continuous on the segment $[a ; b]$ and differentiable at all points of this segment (except, possibly, finitely many points in general case). Then the largest and the smallest values of $f(x)$ on $[a ; b]$ belong to the set consisting of $f(a), f(b)$, and the values $f\left(x_{i}\right)$, where $x_{i} \in(a, b)$ are the points at which $f^{\prime}(x)$ is either equal to zero or does not exist (is infinite).

A function $f(x)$ that is continuous on a segment $[a ; b]$ takes any value $c \in[m ; M]$ on that segment, where m and M are, respectively, its smallest and its largest values on $[a ; b]$.

Thus we have

$$
\begin{gathered}
f(-1)=(-1)^{3}-3 \cdot(-1)^{2}+2 \cdot(-1)-1=-1-3-2-1=-7<0 \\
f(1)=1^{3}-3 \cdot 1^{2}+2 \cdot 1-1=1-3+2-1=-1<0
\end{gathered}
$$

Further more

$$
f^{\prime}(x)=3 x^{2}-6 x+2
$$

We have to solve next equation

$$
\begin{gathered}
f^{\prime}(x)=0, \\
3 x^{2}-6 x+2=0, \\
D=36-4 \cdot 3 \cdot 2=36-24=12>0, \\
x_{1,2}=\frac{6 \pm \sqrt{12}}{6}=1 \pm \frac{\sqrt{3}}{2} .
\end{gathered}
$$

Point $x_{1}=\left(1+\frac{\sqrt{3}}{2}\right)$ does not belong to $[-1 ; 1]$.
So

$$
x_{2}=\left(1-\frac{\sqrt{3}}{2}\right) \approx 0.1339745962 \in[-1 ; 1]
$$

and

$$
\begin{aligned}
f\left(x_{2}\right)=(0.1339745962)^{3} & -3 \cdot(0.1339745962)^{2}+2 \cdot 0.1339745962-1 \approx \\
& \approx-0.7834936491<0
\end{aligned}
$$

Because

$$
f(-1)<0,
$$

$$
\begin{gathered}
f\left(1-\frac{\sqrt{3}}{2}\right)<0 \\
f(1)<0
\end{gathered}
$$

then graph of the function does not cross the $O X$ axis when $x \in[-1,1]$. Thus, the equation

$$
x^{3}-3 x^{2}+2 x=1
$$

has no roots in the interval $[-1,1]$.

Answer:

a)

$$
\begin{aligned}
& x_{1}=1.1147286724 \\
& x_{2}=1.1141571268 \\
& x_{3}=1.1141571409
\end{aligned}
$$

