Answer on Question \#50261 - Math - Complex Analysis

Decide whether the series is convergent or divergent
A. $\sum \frac{8^{n+i 2^{-n}}}{9^{n}}$
B. $\sum \overline{\left(\frac{n+i n+n^{i}}{i^{n}}\right)}$

Solution

A) $\sum \frac{8^{n+i 2^{-n}}}{9^{n}}=\left(\frac{8}{9}\right)^{n} 8^{i 2^{-n}} \sum \frac{8^{n+i 2^{-n}}}{9^{n}}=\sum\left(\frac{8}{9}\right)^{n} 8^{i / 2^{n}}$.

By Cauchy criterion
$q=\lim _{n \rightarrow \infty} \sqrt[n]{\left|\left(\frac{8}{9}\right)^{n} 8^{i / 2^{n}}\right|}=\frac{8}{9}<1$, hence the series is convergent.
B) $\sum \overline{\left(\frac{n+i n+n^{i}}{i^{n}}\right)}=\sum \overline{\left(\frac{n+i n+e^{i \ln n}}{i^{n}}\right)}$. By Cauchy criterion

$$
\begin{aligned}
\left.q=\lim _{n \rightarrow \infty} \sqrt[n]{\left\lvert\, \frac{n+l n+e^{l n n}}{\iota^{n}}\right.} \right\rvert\, & \lim _{n \rightarrow \infty}\left|n+i n+e^{i l n n}\right| \\
& =\lim _{n \rightarrow \infty} \sqrt{(n+\cos (\ln n))^{2}+(n+\sin (\ln n))^{2}}=+\infty, \text { hence }
\end{aligned}
$$

the series is divergent.

