Answer on Question \#50191 - Math - Discrete Mathematics

without using truth table prove that $\neg(p \leftrightarrow q)$ and $\neg p \leftrightarrow q$ are logically equivalent.

Solution

Suppose that $\neg(p \leftrightarrow q)$ and $\neg p \leftrightarrow q$ are not logically equivalent.
It means that there exists such p, q that $\bar{p} \leftrightarrow \bar{q} \neq \bar{p} \leftrightarrow q$.
Consider two cases:

1) $\bar{p} \leftrightarrow q=0 \Rightarrow p \leftrightarrow q=1 \Rightarrow p=q \Rightarrow \bar{p} \neq q \Rightarrow \bar{p} \leftrightarrow q=0$. We have obtained that $\bar{p} \leftrightarrow q=\bar{p} \leftrightarrow q$, because $0=0$. It contradicts the assumption $\bar{p} \leftrightarrow q \neq \bar{p} \leftrightarrow q$.
2) $\bar{p} \leftrightarrow q=1 \Rightarrow p \leftrightarrow q=0 \Rightarrow p \neq q \Rightarrow \bar{p}=q \Rightarrow \bar{p} \leftrightarrow q=1$. We have obtained that $\bar{p} \leftrightarrow q=\bar{p} \leftrightarrow q$, because $1=1$. It contradicts the assumption $\bar{p} \leftrightarrow q \neq \bar{p} \leftrightarrow q$.

Both cases yield a contradiction. Thus, assumption $\bar{p} \leftrightarrow q \neq \bar{p} \leftrightarrow q$ was wrong, hence $\neg(\mathrm{p} \leftrightarrow \mathrm{q})$ and $\neg p \leftrightarrow q$ are logically equivalent.

