

Answer on Question #50191 – Math – Discrete Mathematics

without using truth table prove that
 $\neg(p \leftrightarrow q)$ and $\neg p \leftrightarrow q$ are logically equivalent.

Solution

Suppose that $\neg(p \leftrightarrow q)$ and $\neg p \leftrightarrow q$ are not logically equivalent.

It means that there exists such p, q that $\overline{p \leftrightarrow q} \neq \overline{p} \leftrightarrow q$.

Consider two cases:

- 1) $\overline{p \leftrightarrow q} = 0 \Rightarrow p \leftrightarrow q = 1 \Rightarrow p = q \Rightarrow \overline{p} \neq q \Rightarrow \overline{p} \leftrightarrow q = 0$. We have obtained that $\overline{p \leftrightarrow q} = \overline{p} \leftrightarrow q$, because $0=0$. It contradicts the assumption $\overline{p \leftrightarrow q} \neq \overline{p} \leftrightarrow q$.
- 2) $\overline{p \leftrightarrow q} = 1 \Rightarrow p \leftrightarrow q = 0 \Rightarrow p \neq q \Rightarrow \overline{p} = q \Rightarrow \overline{p} \leftrightarrow q = 1$. We have obtained that $\overline{p \leftrightarrow q} = \overline{p} \leftrightarrow q$, because $1=1$. It contradicts the assumption $\overline{p \leftrightarrow q} \neq \overline{p} \leftrightarrow q$.

Both cases yield a contradiction. Thus, assumption $\overline{p \leftrightarrow q} \neq \overline{p} \leftrightarrow q$ was wrong, hence $\neg(p \leftrightarrow q)$ and $\neg p \leftrightarrow q$ are logically equivalent.