Answer on Question \#49961 - Math - Complex Analysis

1) Given:

$$
\sum_{n=1}^{\infty}(-1)^{n+1} n(z-1)^{n}
$$

Solution:

$c_{n}=(-1)^{n+1} n$ is the nth term
R is a radius of convergence
U_{R} is the convergence neighborhood
$R=\frac{1}{\lim _{n \rightarrow \infty} \sqrt[n]{\left|c_{n}\right|}}=\frac{1}{\lim _{n \rightarrow \infty} \sqrt[n]{|n|}}=1$
then $U_{R}=\{z:|z-1|<1\}$

Answer:

$$
\begin{aligned}
& R=1 \\
& U_{R}=\{z:|z-1|<1\}
\end{aligned}
$$

2) Given:

$$
\sum_{n=1}^{\infty} n(1-4 i)^{n}
$$

Solution:

Assume that the initial series is convergent.
The series $\sum_{n=1}^{\infty} n(1-4 i)^{n}=(1-4 i) \sum_{n=1}^{\infty} n(1-4 i)^{n-1}$ is the derivative of $(1-4 i) \sum_{n=1}^{\infty}(1-4 i)^{n}$.
Convergent series are differentiable. The last series is convergent only if $|1-4 i|<1$, which is false, because $|1-4 i|=\sqrt{17}>\sqrt{16}=4$, i.e. $|1-4 i|>1$. We have obtained a contradiction, our assumption was not correct. Thus, the series $\sum_{n=1}^{\infty} n(1-4 i)^{n}$ diverges.

Answer: not convergent

