Question 4980:

Find the $\operatorname{Re}(\mathrm{z})$ of $\frac{\log (z+4)}{z^{2}+i}$
So, we have $F(z)=\frac{\log (z+4)}{z^{2}+i}$. Lets multiply and divide this function by $z^{2}-i$ (this is the conjugate of the denominator), to have the complex part only in numerator (we know that $(a-b)(a+b)=a^{2}-b^{2} ; i^{2}=-1$):

$$
F(z)=\frac{\log (z+4) \cdot\left(z^{2}-i\right)}{\left(z^{2}+i\right) \cdot\left(z^{2}-i\right)}=\frac{\log (z+4) \cdot\left(z^{2}-i\right)}{z^{4}+1}
$$

Hence,

$$
\operatorname{Re}(F(z))=\log (z+4) \cdot \frac{z^{2}}{z^{4}+1}
$$

