Answer on Question \#49789 - Math - Matrix | Tensor Analysis

$$
\begin{gathered}
x+y+2 z=5 \\
2 x-3 y+5 z=5 \\
x+2 y-z=6
\end{gathered}
$$

Solve by matrix. And also calculate x, y, z.

Solution:

The first step is to turn three variable system of equations into a 3×4 Augmented matrix.

$$
\left(\begin{array}{ccc|c}
1 & 1 & 2 & 5 \\
2 & -3 & 5 & 5 \\
1 & 2 & -1 & 6
\end{array}\right)
$$

Next we label the rows of the matrix:

$$
\left(\begin{array}{ccc|c}
1 & 1 & 2 & 5 \\
2 & -3 & 5 & R_{1} \\
5 & 2 & -1 & 6
\end{array}\right) \begin{aligned}
& R_{2} \\
& R_{3}
\end{aligned}
$$

Next we need to change all the entries below the leading coefficient of the first row to zeros.
For the second row, we can achieve this by multiplying by $-\frac{1}{2}$ and then adding the result to row 1 . For the third row, we can multiply by -1 and then also add the result to row 1 .

$$
\begin{aligned}
& \underset{-\frac{1}{2} R_{2}}{-1 R_{3}}\left(\begin{array}{ccc|c|c}
1 & 1 & 2 & 5 \\
-1 & \frac{3}{2} & -\frac{5}{2} & -\frac{5}{2} \\
-1 & -2 & 1 & R_{1}{ }^{\prime} \\
R_{2} \\
R_{3}
\end{array}\right. \\
& \underset{-1}{-\frac{1}{2} \mathrm{R}_{2}+\mathrm{R}_{1}} \underset{-1 \mathrm{R}_{3}+\mathrm{R}_{1}}{ }\left(\begin{array}{ccc|c}
1 & 1 & 2 & 5 \\
0 & \frac{5}{2} & -\frac{1}{2} & \frac{5}{2} \\
0 & -1 & 3 & \mathrm{R}_{1}{ }^{\prime} \\
{ }^{\prime}
\end{array}\right) \mathrm{R}_{2}{ }^{\prime}{ }^{\prime}{ }^{\prime}
\end{aligned}
$$

We need the leading element in the second row to also be one. We obtain this result by multiplying the second row by $\frac{2}{5}$.

$$
\frac{2}{5} R_{2}{ }^{\prime}\left(\begin{array}{ccc|c}
1 & 1 & 2 & 5 \\
0 & 1 & -\frac{1}{5} & 1 \\
0 & -1 & 3 & -1
\end{array}\right) \begin{gathered}
R_{1}^{\prime} \\
R_{2}^{\prime \prime} \\
R_{3}^{\prime}
\end{gathered}
$$

Next we zero out the element in row three beneath the leading coefficient in row two. For achieve these adding row two and three.

$$
R_{2}^{\prime \prime}+R_{3}^{\prime}\left(\begin{array}{ccc|c}
1 & 1 & 2 & 5 \\
0 & 1 & -\frac{1}{5} & 5 \\
1 & R_{1}{ }^{\prime \prime} \\
0 & 0 & \frac{14}{5} & 0
\end{array}\right) \begin{aligned}
& R_{2}^{\prime \prime} \\
& R_{3}^{\prime \prime}
\end{aligned}
$$

From the above matrix, we solve for the variables starting with z in the last row

$$
\frac{14}{5} z=0
$$

So $\mathrm{z}=0$
Next we solve for y by substituting for z in the equation formed by the second row:

$$
\begin{gathered}
y-\frac{1}{5} z=1 \\
y=1+0 \\
y=1
\end{gathered}
$$

Finally we solve for x by substituting the values of y and z into the equation formed by the first row:

$$
\begin{gathered}
x+y+2 z=5 \\
x=5-1-0 \\
x=4
\end{gathered}
$$

Therefore, the solution to the system of equations is $\{x, y, z\}=\{4,1,0\}$
Answer: $\{4,1,0\}$

