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Solution. Test it for absolute convergence: 
 








 








1
3

2

1
3 1

9

1

3

nn nn

n

nn

ni
, use the comparison test 

23

2

3

2

3

10

3

10

1

9
0

nn

n

nn

n





 , but the 

series 


1
23

10

n n
 converges because the power of n  in denominator greater than 1. So, 
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Answer: the series is absolutely convergent. 
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Solution. Test it for absolute convergence: 
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, that is why  the series 






1

2

4

1

n
n

n
 

converges. So, 
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Answer: the series is absolutely convergent. 
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Solution. Let us check the vanishing condition: 
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 , where k  is a 

integer constant. Vanishing condition is the necessary condition for summability. So, the series 















1

2
1

n
in

 diverges. 

Answer: the series diverges. 
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Solution. First of all, lets consider nie cosh , n  is a integer number, then 
2

cosh
nn ee

n


  is real 

number, this mean that 1cosh nie  

Let us check the vanishing condition: 
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Answer: the series diverges. 
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