Answer on Question #49485 - Math - Complex Analysis

Test the series for convergence : Details

1) $[i^n] / [2^{(n+2)}]$

2) [n! ^ 2] / [e^n]

3) $[1] / [\{ square root of (i+n) \}^n]$

4) conjugate $\left[\left(1 / \left(n^{i} \right) \right] \right]$

Solution

- 1) $\left|\frac{i^n}{2^{n+2}}\right| = \frac{1}{2^{n+2}} = \frac{1}{4} \left(\frac{1}{2}\right)^n$ is a geometric sequence with common ratio $q = \frac{1}{2} < 1$, so the series is convergent.
- 2) $\frac{c_{n+1}}{c_n} = \frac{((n+1)!)^2}{e^{n+1}}$: $\frac{(n!)^2}{e^n} = \frac{(n+1)^2}{e} > 1$ for $n \ge 1$, $\frac{c_{n+1}}{c_n} = \frac{(n+1)^2}{e} \to \infty$ as $n \to \infty$. By d'Alembert's ratio test, the series $\sum_{n=1}^{\infty} \frac{(n!)^2}{e^n}$ diverges.

3)
$$\left|\frac{1}{(\sqrt{i+n})^n}\right| = \frac{1}{|i+n|^{\frac{n}{2}}} < \frac{1}{n^{\frac{n}{2}}}$$
, its n-th root is $\sqrt[n]{\left|\frac{1}{(\sqrt{i+n})^n}\right|} < \sqrt[n]{\frac{1}{n^{\frac{n}{2}}}} = \frac{1}{\sqrt{n}} < 1$ for $n \ge 2$,
 $\sqrt[n]{\left|\frac{1}{(\sqrt{i+n})^n}\right|} < \sqrt[n]{\frac{1}{n^{\frac{n}{2}}}} = \frac{1}{\sqrt{n}} \to 0$ as $n \to \infty$ (here $0 < 1$), hence, by Cauchy ratio test, the series is convergent

series is convergent.

4) $n^{i} = e^{i \cdot Ln(n)} = e^{i(\ln(n) + 2\pi ki)} = e^{i\ln(n) - 2\pi k}$, $|n^{i}| = e^{-2\pi k}$ not equal to zero, so $\left|\frac{\overline{1}}{n^{i}}\right| = e^{2\pi k}$ is a constant, different from zero, then the series is not convergent.

www.AssignmentExpert.com