Answer on Question \#49485 - Math - Complex Analysis

Test the series for convergence : Details

1) $\left[\mathrm{i}^{\wedge} \mathrm{n}\right] /\left[2^{\wedge}(\mathrm{n}+2)\right]$
2) $\left[n!{ }^{\wedge} 2\right] /\left[e^{\wedge} n\right]$
3) $[1] /\left[\{\text { square root of }(i+n)\}^{\wedge} n\right]$
4) conjugate $\left[\left(1 /\left(\mathrm{n}^{\wedge} \mathrm{i}\right)\right]\right.$

Solution

1) $\left|\frac{i^{n}}{2^{n+2}}\right|=\frac{1}{2^{n+2}}=\frac{1}{4}\left(\frac{1}{2}\right)^{n}$ is a geometric sequence with common ratio $q=\frac{1}{2}<1$, so the series is convergent.
2) $\frac{c_{n+1}}{c_{n}}=\frac{((n+1)!)^{2}}{e^{n+1}}: \frac{(n!)^{2}}{e^{n}}=\frac{(n+1)^{2}}{e}>1$ for $n \geq 1, \frac{c_{n+1}}{c_{n}}=\frac{(n+1)^{2}}{e} \rightarrow \infty$ as $n \rightarrow \infty$. By d'Alembert's ratio test, the series $\sum_{n=1}^{\infty} \frac{(n!)^{2}}{e^{n}}$ diverges.
3) $\left|\frac{1}{(\sqrt{i+n})^{n}}\right|=\frac{1}{|i+n|^{\frac{n}{2}}}<\frac{1}{n^{\frac{n}{2}}}$, its n-th root is $\sqrt[n]{\left|\frac{1}{(\sqrt{i+n})^{n}}\right|}<\sqrt[n]{\frac{1}{n^{\frac{n}{2}}}}=\frac{1}{\sqrt{n}}<1$ for $n \geq 2$,
$\sqrt[n]{\left|\frac{1}{(\sqrt{i+n})^{n}}\right|}<\sqrt[n]{\frac{1}{n^{\frac{n}{2}}}}=\frac{1}{\sqrt{n}} \rightarrow 0$ as $n \rightarrow \infty$ (here $0<1$), hence, by Cauchy ratio test, the series is convergent.
4) $n^{i}=e^{i \cdot L n(n)}=e^{i(\ln (n)+2 \pi k i)}=e^{i \ln (n)-2 \pi k}, \quad\left|n^{i}\right|=e^{-2 \pi k}$ not equal to zero, so $\left|\frac{1}{n^{i}}\right|=e^{2 \pi k}$ is a constant, different from zero, then the series is not convergent.
