Answer on Question \#49484 - Math - Complex Analysis

Find if these sequence convergent of divergent (details)

1) $\left[(1+\mathrm{i})^{\wedge}(1 / \mathrm{n})\right] /$ square $\operatorname{root}(\mathrm{n}-1)$
2) $\left[2^{\wedge} n!\right] /\left[2^{\wedge}(n+1)!\right]$
3) $\sin ((1+i) / n)$

Solution

We say that $\left(z_{n}\right)$ converges to A (write $z_{n} \rightarrow A$ or $\lim _{n \rightarrow \infty} z_{n}=A$), if for every real number ε, there exists a natural number N such that

$$
n \geq N \Rightarrow\left|z_{n}-A\right|<\varepsilon
$$

1) $\left|\frac{(1+i) \frac{1}{n}}{\sqrt{n-1}}\right|=\frac{\frac{1}{2 n}}{\sqrt{n-1}} \leq \frac{\sqrt{2}}{\sqrt{n-1}}<\frac{2}{\sqrt{n-1}} \rightarrow 0$ as $n \rightarrow \infty$, besides, $2^{\frac{1}{2 n}} \rightarrow 2^{0}=1$ as $n \rightarrow \infty, \sqrt{n-1} \rightarrow \infty$ as $n \rightarrow \infty$. We take for any $\varepsilon>0$ natural number $N=\left[\left(\frac{2}{\varepsilon}\right)^{2}\right]+1$ such that for all
$n \geq N \Rightarrow \frac{2}{\sqrt{n-1}}<\varepsilon$, hence
$\left|\frac{(1+i)^{\frac{1}{n}}}{\sqrt{n-1}}\right|<\varepsilon$. Thus, the sequence $z_{n}=\frac{(1+i)^{\frac{1}{n}}}{\sqrt{n-1}}$ is convergent.
2) $\frac{2^{n!}}{2^{(n+1)!}}=2^{(n!-(n+1)!)}=2^{n!(1-(n+1))}=2^{-n \cdot n!}=\frac{1}{2^{n-n!}} \rightarrow 0$ as $n \rightarrow \infty$, so the sequence $z_{n}=\frac{2^{n!}}{2^{(n+1)!}}$ with positive terms is convergent.
3) $\left|\sin \left(\frac{1+i}{n}\right)\right|=\left|\frac{e^{i\left(\frac{1+i}{n}\right)_{-}-i\left(\frac{1+i}{n}\right)}}{2 i}\right| \rightarrow 0$ as $n \rightarrow \infty$, because $\frac{1+i}{n} \rightarrow 0$ as $n \rightarrow \infty$ (here $\left|\frac{1+i}{n}\right|<\frac{2}{n} \rightarrow 0$ as $n \rightarrow \infty)$. Thus, the sequence $z_{n}=\sin \left(\frac{1+i}{n}\right)$ is convergent.
