Answer on Question \#49016 - Math - Statistics and Probability

I surveyed each house on the block to determine how much we are spending on Halloween treats. The distribution below represents the results in dollars.

\$ Spent	f
$50-59$	1
$40-49$	2
$30-39$	5
$20-29$	12
$10-19$	7
$0-9$	7

Calculate whether there has been a significant increase over the average 2010 figure of $\$ 18$ reported in the neighborhood newspaper. State the hypotheses, alpha, df, and critical value.

Solution

Hypotheses are

H_{o} : There is not a significant increase over the average 2010 figure of $\$ 18$ reported in the neighborhood newspaper.
H_{a} : There is a significant increase over the average 2010 figure of $\$ 18$ reported in the neighborhood newspaper.

Evaluate

$$
\begin{gathered}
\bar{x}=\frac{\sum(x f)}{n}=\frac{7 \cdot 4.5+7 \cdot 14.5+12 \cdot 24.5+5 \cdot 34.5+2 \cdot 44.5+1 \cdot 54.5}{34}=21.85 \\
\sum(x)^{2}=\sum\left(x^{2} f\right)=7 \cdot 4.5^{2}+7 \cdot 14.5^{2}+12 \cdot 24.5^{2}+5 \cdot 34.5^{2}+2 \cdot 44.5^{2}+1 \cdot 54.5^{2}=21698.46
\end{gathered}
$$

$$
s=\sqrt{\frac{\sum(x)^{2}-n \bar{x}^{2}}{n-1}}=\sqrt{\frac{21698.46-34 \cdot(21.85)^{2}}{34-1}}=12.87
$$

Hypotheses:
$H_{o}: \mu \leq 18$
$H_{a}: \mu>18$

Decision Rule:

$\alpha=0.05$
Degrees of freedom $n-1=34-1=33$.

Critical t-score from t-table $t^{*}=1.692$.

Reject H_{0} if $t>1.692$.
Test Statistic:

$$
t=\frac{\bar{x}-\mu}{\frac{s}{\sqrt{n}}}=\frac{21.85-18}{\frac{12.87}{\sqrt{34}}}=1.744
$$

Decision (in terms of the hypotheses):
Since $t=1.744>\mathrm{t}^{*}=1.692$ we reject H_{0}.
Conclusion (in terms of the problem):
There is a significant increase at 0.05 significance level over the average 2010 figure of $\$ 18$ reported in the neighborhood newspaper.

