Answer on Question \#48898 - Math - Statistics and Probability

Three numbers are selected at random from the numbers 1 to 100 . Find the probability that they are in A.P?

Solution

The number of ways to pick three numbers from a set of $2 n$ consecutively numbers, is

$$
\binom{2 n}{3}=\frac{2 n!}{(2 n-3)!3!}
$$

If we count the ways to pick the highest and lowest such that they have the same parity, there is a specific number for the middle. If the lowest is 1 or 2 , there are $n-1$ choices, if the lowest is 3 or 4 , there are $n-$ 2 , if the lowest is 5 or 6 there are $n-3$, so the total number of ways to select three numbers in arithmetic progression is

$$
2(n-1)+2(n-2)+\cdots+2(1)=2 \sum_{k=1}^{n-1} k=2 \cdot \frac{(n-1) n}{2}=n(n-1)
$$

In our problem $2 n=100 \rightarrow n=50$.
The probability that three numbers are in A.P. is

$$
P=\frac{n(n-1)}{\binom{2 n}{3}}=\frac{50(50-1)}{\binom{100}{3}}=\frac{50 \cdot 49 \cdot 3!\cdot 97!}{100!}=\frac{50 \cdot 49 \cdot 6}{100 \cdot 99 \cdot 98}=\frac{1}{66} \approx 0.015
$$

