Answer on Question \#48443 - Math - Statistics and Probability

Weights of women are normally distributed with mean $\mu=143$ pounds and standard deviation $\sigma=29$ pounds. If $n=36$ women are randomly selected, what is the probability that their mean weight is between 120 and 160 pounds?

Solution

The mean weight is
$\bar{X}=\frac{X_{1}+X_{2}+\cdots+X_{n}}{n}$,
The expectation of mean weight is
$E(\bar{X})=E\left(X_{1}\right)=\mu=143$,
The variance of mean weight is
$\operatorname{Var}(\bar{X})=\frac{\sigma^{2}}{n}=\frac{29^{2}}{36}$.
The probability that mean weight is between 120 and 160 pounds is

$$
\begin{gathered}
P(120<\bar{X}<160)=P(\bar{X}<160)-P(\bar{X}<120) . \\
P(\bar{X}<160)=P\left(z<z_{1}\right)
\end{gathered}
$$

where

$$
\begin{gathered}
z_{1}=\frac{160-\mu}{\frac{\sigma}{\sqrt{n}}}=\frac{160-143}{\frac{29}{\sqrt{36}}}=3.52 \\
P(\bar{X}<120)=P\left(z<z_{2}\right)
\end{gathered}
$$

where

$$
z_{1}=\frac{120-\mu}{\frac{\sigma}{\sqrt{n}}}=\frac{120-143}{\frac{29}{\sqrt{36}}}=-4.76 .
$$

Thus

$$
P(120<\bar{X}<160)=P(z<3.52)-P(z<-4.76)=0.99978-0.00001=0.99977
$$

Answer: 0.99977.

