Answer on Question \#48254 - Math - Calculus

A price p (in dollars) and demand x for a product are related by
$2 x^{\wedge} 2-3 x p+50 p^{\wedge} 2=23600$.
If the price is increasing at a rate of 2 dollars per month when the price is 20 dollars, find the rate of change of the demand

Solution.

$2 x^{2}-3 x p+50 p^{2}=23600$.
If $p=20$, then $2 x^{2}-60 x+20000=23600 \rightarrow x^{2}+30 x-1800=0 \rightarrow$
$\rightarrow x=-60$ or $x=30$.
The value we select has to be greater than 0 , so $\boldsymbol{x}=\mathbf{3 0}$.
Now, take the derivative of $2 x^{2}-3 x p+50 p^{2}=23600$.
$\frac{d}{d t}\left(2 x^{2}-3 x p+50 p^{2}\right)=\frac{d}{d t}(23600)$.
$4 x x^{\prime}-3 x^{\prime} p-3 x p^{\prime}+100 p p^{\prime}=0 \rightarrow x^{\prime}=-\frac{(-3 x+100 p) p^{\prime}}{4 x-3 p}$.
When $p=20, p^{\prime}=2, x=30, x^{\prime}=-\frac{(-90+2000) 2}{40+90}=-\frac{3820}{130} \approx-29.38$.
Rate of change of the demand is approximately equal to -29.38 .

