Answer on Question \#48251-Math - Calculus

Suppose that for a company manufacturing calculators, the cost, and revenue equations are given by $C=70000+40 x, R=400-\frac{x^{2}}{20}$, where the production output in one week is x_{0} calculators. If the production rate is increasing at a rate of $\Delta x=500$ calculators when the production output is 6000 calculators, find each of the following: Rate of change in $\operatorname{cost}\left(\Delta_{C}\right)$, rate of change in revenue $\left(\Delta_{R}\right)$, rate of change in profit $\left(\Delta_{P}\right)$.

Solution

1. Profit (P): $P=R-C$, where $R \geq 0, C \geq 0$.
2. $x_{1}=x_{0}+\Delta x ; x_{n}=x_{0}+n \Delta x ; x_{n+1}=x_{n}+\Delta x$;
3. $\Delta_{C_{n}}=C_{n+1}-C_{n}=\left(70000+40\left(x_{n}+\Delta x\right)\right)-\left(70000+40 x_{n}\right)=40 \Delta x=20000$;
4. $\Delta_{R_{n}}=R_{n+1}-R_{n}=\left(400-\frac{\left(x_{n}+\Delta x\right)^{2}}{20}\right)-\left(400-\frac{x_{n}^{2}}{20}\right)=-\frac{\Delta x}{20}\left(2 x_{n}+\Delta x\right)=$
$-\frac{\Delta x}{20}\left(2 x_{0}+(2 n+1) \Delta x\right)=-25(12000+(2 n+1) 500)=-312500-25000 n$;
5. $\Delta_{P_{n}}=P_{n+1}-P_{n}=R_{n+1}-C_{n+1}-R_{n}+C_{n}=\Delta_{R_{n}}-\Delta_{C_{n}}=-332500-25000 n$;

Attention: $R \geq 0$, hence equation $R=400-\frac{x^{2}}{20}$ has sense only for $0 \leq x \leq 89$, thus parts of task regarding revenue and profit with those initial values are meaningless.

