Answer on Question \#48218 - Math - Algorithms | Quantitative Methods

Q: The equation $x^{\wedge} 3+2 x^{\wedge} 2-5=0$ has a positive real root in the interval $(1,2)$. Write a fixed point iteration method and show that it converges. Starting with initial approximation $\mathrm{x}=1.5$ find the root of the equation. Perform two iterations.

Solution.

$x^{3}+2 x^{2}-5=0 \rightarrow x=f(x)$ where $f(x)=\sqrt{\frac{5}{x+2}}$.
$f^{\prime}(x)=-\frac{1}{2} \sqrt{\frac{5}{(x+2)^{3}}}$.
$\left|f^{\prime}(x)\right|<1$ on $[1,2]$, thus fixed point iteration method converges.
A fixed point iteration method
$x_{n+1}=f\left(x_{n}\right) \rightarrow x_{n+1}=\sqrt{\frac{5}{x_{n}+2}}$
$x_{0}=1.5$
$x_{1}=\sqrt{\frac{5}{1.5+2}}=1.195$
$x_{2}=\sqrt{\frac{5}{1.195+2}}=1.251$

